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Abstract

Diffusion magnetic resonance imaging can indirectly infer the microstructure of tis-

sues and provide metrics subject to normal variability in a population. Potentially

abnormal values may yield essential information to support analysis of controls and

patients cohorts, but subtle confounds could be mistaken for purely biologically

driven variations amongst subjects. In this work, we propose a new harmonization

algorithm based on adaptive dictionary learning to mitigate the unwanted variability

caused by different scanner hardware while preserving the natural biological variabil-

ity of the data. Our harmonization algorithm does not require paired training data

sets, nor spatial registration or matching spatial resolution. Overcomplete dictionaries

are learned iteratively from all data sets at the same time with an adaptive regulariza-

tion criterion, removing variability attributable to the scanners in the process. The

obtained mapping is applied directly in the native space of each subject toward a

scanner-space. The method is evaluated with a public database which consists of

two different protocols acquired on three different scanners. Results show that the

effect size of the four studied diffusion metrics is preserved while removing variabil-

ity attributable to the scanner. Experiments with alterations using a free water com-

partment, which is not simulated in the training data, shows that the modifications

applied to the diffusion weighted images are preserved in the diffusion metrics after

harmonization, while still reducing global variability at the same time. The algorithm

could help multicenter studies pooling their data by removing scanner specific con-

founds, and increase statistical power in the process.
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1 | INTRODUCTION

Diffusion weighted magnetic resonance imaging (dMRI) is a noninva-

sive imaging technique that can indirectly infer the microstructure of

tissues based on the displacement of water molecules. As dMRI only

offers an indirect way to study, for example, the brain microstructure,

analysis of dMRI data sets includes multiple processing steps to

ensure adequate correction of acquisition artifacts due to subject

motion or eddy current induced distortions, amongst others (Tournier,

Mori, & Leemans, 2011). Quantitative scalar measures of diffusion can
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be extracted from the acquired data sets, such as the apparent diffu-

sion coefficient (ADC) or fractional anisotropy (FA) as computed from

diffusion tensor imaging (DTI) (P. Basser, Mattiello, & LeBihan, 1994;

P. J. Basser & Pierpaoli, 1996), with a plethora of other measures and

diffusion models nowadays available (Assemlal, Tschumperlé, Brun, &

Siddiqi, 2011; Tournier, 2019). These measures are subject to normal

variability across subjects and potentially abnormal values or features

extracted from dMRI data sets may yield essential information to

support analysis of controls and patients cohorts (Johansen-Berg &

Behrens, 2009; Jones, 2011).

As small changes in the measured signal are ubiquitous due to

differences in scanner hardware (Sakaie et al., 2018), software ver-

sions of the scanner or processing tools (Gronenschild et al., 2012;

Sakaie et al., 2018), field strength of the magnet (Huisman et al., 2006)

or reconstruction methods in parallel MRI and accelerated imaging

(Dietrich et al., 2008; St-Jean, De Luca, Tax, Viergever, & Leemans,

2020), nonnegligible effects may translate into small differences in

the subsequently computed diffusion metrics. Subtle confounds affect-

ing dMRI can even be due to measuring at different time points in

the cardiac cycle, leading to changes in the measured values of

pseudo-diffusion over the cardiac cycle (De Luca et al., 2019; Federau

et al., 2013). In the presence of disease, these small variations in the

measured signal are entangled in the genuine biological variability,

which is usually the main criterion of interest to discover or analyze

subsequently. This can lead to confounding effects and systematic

errors that could be mistaken for purely biologically driven variations

amongst subjects. To mitigate these issues, large-scale studies try

to harmonize their acquisition protocols across centers to further

reduce these potential sources of variability (Duchesne et al., 2019) or

may only use a single scanner without upgrading it for long term

studies (Hofman et al., 2015; Hofman, Grobbee, De Jong, & Van den

Ouweland, 1991). The stability brought by keeping the same scanning

hardware is however at the cost of potentially missing on improved,

more efficient sequences or faster scanning methods becoming com-

mon in MRI (Feinberg et al., 2010; Larkman et al., 2001; Lustig,

Donoho, & Pauly, 2007). Even by carefully controlling all these sources

of variability as much as possible, there still remain reproducibility

issues between scanners of the same model or in scan-rescan studies

of dMRI metrics (Kristo et al., 2013; Magnotta et al., 2012; Vollmar

et al., 2010). Over the years, many algorithms have been developed

to mitigate the variability attributed to nonbiological effects in dMRI,

for example, in order to combine data sets from multiple studies

and increase statistical power, see for example, (Pinto et al., 2020;

Tax et al., 2019; Zhu, Moyer, Nir, Thompson, & Jahanshad, 2019) for

reviews. Common approaches consist in harmonizing the dMRI data

sets through the coefficients of a spherical harmonics representation

(Blumberg et al., 2019; Cetin Karayumak et al., 2019; Mirzaalian

et al., 2016) or the computed scalar metrics (Fortin et al., 2017; Pohl

et al., 2016) to reduce variability between scanners. Recently, a dMRI

benchmark database containing 10 training subjects and four test sub-

jects data sets acquired on three scanners with two acquisition proto-

cols was presented at the computational diffusion MRI (CDMRI) 2017

challenge (Tax et al., 2019). The publicly available CDMRI database

was previously used to compare five harmonization algorithms, includ-

ing a previous version of the algorithm we present here, which we use

for evaluation.

In this work, we propose a new algorithm based on adaptive dictio-

nary learning to mitigate the unwanted variability caused by different

scanner hardware while preserving the natural biological variability pre-

sent in the data. The algorithm is applied directly on the dMRI data sets

themselves without using an alternative representation and can be used

on data sets acquired at different spatial resolutions or with a different

set of diffusion sensitizing gradients (i.e., b-vectors). Expanding upon

the methodology presented in St-Jean, Coupé, and Descoteaux (2016)

and St-Jean, Viergever, and Leemans (2017), overcomplete dictionaries

are learned automatically from the data with an automatic tuning of the

regularization parameter to balance the fidelity of the reconstruction

with sparsity of the coefficients at every iteration. These dictionaries

are either constructed using the data from a given source scanner and

used to reconstruct the data from a different target scanner (first set of

experiments) or learned using data sets coming from multiple scanners

at once—creating a “scanner-space” in the process (second set of exper-

iments). One of the improvements of the algorithm is the ability to har-

monize data sets acquired with multiple scanners, without explicitly

needing to define a source and target scanner as is usually done. This

new formulation also does not need to match the gradient directions

(i.e., the b-vectors) of the other data sets. In the first set of experiments,

these dictionaries are used to reconstruct the data with a dictionary

from a different target scanner, removing variability present in the

source scanner in the process. Mapping across different spatial resolu-

tions can be obtained by adequate subsampling of the dictionary. In

the second set of experiments, the test data sets are altered with

simulations mimicking edema while the training data sets are left

untouched. We show that the harmonization algorithm preserves the

natural variability of the data, even if these alterations are not part of

the training data sets. This is done by mapping all the data sets toward

a global scanner-space, which can be done for multiple scanners at

once without paired data sets or spatial registration of subjects to do

so. Removing the prerequisite of paired data sets for training makes the

algorithm easy to apply for hard to acquire data sets (e.g., patients with

Alzheimer's, Parkinson's, or Huntington's disease) or when pooling data

sets from unrelated studies that are acquired in separate centers. This

makes our proposed method readily applicable for pre-existing and

ongoing studies that would like to remove variability caused by non-

biological or systematic effects in their data analyzes.

2 | THEORY

2.1 | The dictionary learning algorithm

Dictionary learning (Elad & Aharon, 2006; Mairal, Bach, Ponce, &

Sapiro, 2010) aims to find a set of basis elements to efficiently

approximate a given set of input vectors. We follow here in general

our previous formulation from (Tax et al., 2019) which optimizes both

the representation D (called the dictionary or the set of atoms) and
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the coefficients α of that representation (called the sparse codes) as

opposed to using a fixed basis (e.g., Fourier, wavelets, spherical har-

monics). A dictionary can be chosen to be overcomplete (i.e., more

column than rows) as the algorithm is designed to only select a

few atoms to approximate the input vector with a penalization on the

ℓ1-norm of α to promote a sparse solution. Applications in computer

vision with the goal to reduce visual artifacts include demosaicking

(Mairal, Bach, Ponce, Sapiro, & Zisserman, 2009), inpainting (Mairal

et al., 2010) and upsampling (Yang, Wang, Lin, Cohen, & Huang, 2012;

Yang, Wright, Huang, & Ma, 2010) amongst others.

In practice, local windows are used to extract spatial and angular

neighborhoods of diffusion weighted images (DWIs) inside a brain

mask to create the set of vectors required for dictionary learning as in

St-Jean et al. (2016). This is done by first extracting a small 3D region

from a single DWI, which we now refer to as a patch. To include angu-

lar information, a set of patches is taken at the same spatial location

across DWIs in an angular neighborhood (as defined by the angle

between their associated b-vector on the sphere). This considers that

patches from different DWIs at the same spatial location, but which

are in fact not too far on the sphere, exhibit self-similarity that can be

exploited by dictionary learning. Once this process is done, every set

of patches is concatenated to a single vector X. All of these vectors Xn

are then put in a 2D matrix Ω = {X1, …, Xn, …}, where n denotes one of

the individual set of patches.

Once the set of patches Ω has been extracted, D can be initialized

by randomly selecting N vectors from Ω (Mairal et al., 2010). With this

initial overcomplete dictionary, a sparse vector αn can be computed

for each Xn such that D is a good approximation to reconstruct Xn,

that is Xn ≈ D αn. This initial approximation can be refined iteratively

by sampling randomly N new vectors Xn � Ω and updating D to better

approximate those vectors. At the next iteration, a new set Xn � Ω is

randomly drawn and D is updated to better approximate this new set

of vectors. This iterative process can be written as

argmin
D,α

1
N

XN
n=1

1
2

Xn−Dαnk k22 + λi αnk k1
� �

s:t: D:pk k22 = 1 ð1Þ

with αn �p×1 an array of sparse coefficients and D the dictionary

where each column is constrained to unit ℓ2-norm to prevent

degenerated solutions. λi is a regularization parameter used at itera-

tion i (which is further detailed in Section 2.2) to balance the ℓ2-norm

promoting data similarity and the ℓ1-norm promoting sparsity of the

coefficients αn. Iterative updates using Equation (1) alternate between

refining D (and holding α fixed) and computing α (with D held fixed)

for the current set of Xn. As updating α needs an optimization

scheme, this can be done independently for each αn using coordinate

descent (Friedman, Hastie, & Tibshirani, 2010). For updating D, we

use the parameter-free closed form update from Mairal et al. (2010),

which only requires storing intermediary matrices of the previous iter-

ation using α and Xn to update D. Building dictionaries for the task at

hand has been used previously in the context of diffusion MRI for

denoising (Gramfort, Poupon, & Descoteaux, 2014; St-Jean

et al., 2016) and compressed sensing (Gramfort et al., 2014; Merlet,

Caruyer, Ghosh, & Deriche, 2013; Schwab, Vidal, & Charon, 2018)

amongst other tasks. Note that it is also possible to design dictionaries

based on products of fixed basis or adding additional constraints such

as positivity or spatial consistency to Equation (1), see for example,

(Schwab et al., 2018; Vemuri et al., 2019) and references therein for

examples pertaining to diffusion MRI.

2.2 | Automatic regularization selection

Equation (1) relies on a regularization term λi which can be different

for each set of vectors Xn at iteration i. It is, however, common to fix

λi for all Xn depending on some heuristics such as the size of Xn

(Mairal et al., 2010), the local noise variance (St-Jean et al., 2016) or

through a grid search (Gramfort et al., 2014). In the present work, we

instead rely on an automatic tuning criterion since data sets acquired

on multiple scanners are subject to different local noise properties

and of various signal-to-noise ratio (SNR) spatially. In addition, the

data sets do not need to be at the same spatial resolution; defining

a single scalar value for the regularization parameter as done in previ-

ous works is therefore not straightforward anymore. In this work, a

search through a sequence of candidates {λ0, …, λs, …, λlast}, which is

automatically determined for each individual Xn, is instead employed.

The optimal value of λ is chosen by minimizing the Akaike information

criterion (AIC) (Akaike, 1974; Zou, Hastie, & Tibshirani, 2007) as in

(Tax et al., 2019) or additionally by using either three-fold cross-

validation (CV) and minimizing the mean squared error. For the AIC,

the number of nonzero coefficients in αn provides an unbiased esti-

mate of degrees of freedom for the model (Tibshirani & Taylor, 2012;

Zou et al., 2007). We use the AIC for normally distributed errors in

least-squares problems from Burnham and Anderson (2004), given by

AICλi = argmin
λs

mlog
Xn−Dαλsk k22

m

 !
+2df αλsð Þ ð2Þ

with m the number of elements of Xn. In practice, this sequence of λs

is chosen automatically on a log scale starting from λ0 (providing the

null solution αλ0 = 0 ) up to λlast = ε>0 (providing the regular least

squares solution) (Friedman et al., 2010). The solution αn at λs is then

used as a starting estimate for the next value of λs +1. The process

can be terminated early if the cost function Equation (1) does not

change much (e.g., the difference between the solution at λs and λs+1

is below 10−5) for decreasing values of λs, preventing computation of

similar solutions.

3 | METHODS

In this section, we detail how a dictionary can be learned to create an

implicit mapping between scanners. This is done by first constructing

a target dictionary with data sets acquired on at least one or multiple

scanners. After this target dictionary is constructed, a set of coeffi-

cients using the data from a given source scanner is computed,
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keeping the precomputed target dictionary fixed during the process.

The resulting reconstructed data sets have implicit features specifi-

cally captured by the initial target scanner, without reconstructing the

features only found in the source scanner used to acquire the data

initially.

3.1 | Building an optimal representation across
scanners

For harmonization based on dictionary learning, all 3D patches of

small spatial and angular local neighborhoods inside a brain mask were

extracted from the available training data sets for a given scanner as

done in (St-Jean et al., 2016; Tax et al., 2019). Since different patch

sizes are used depending on the reconstruction task, Sections 3.2

and 3.5 detail each case that we study in this manuscript. Only

patches present inside a brain mask were used for computation

and reconstruction. These patches were reorganized as column arrays

Ω = {X1, …, Xn, …} with each Xn �m×1 represented as vectors of size

m. Each volume was mean subtracted and each patch Xn was scaled

to have unit variance (Friedman et al., 2010). Subsequently, features

were automatically created from the target scanner data sets using

dictionary learning as detailed in Section 2.1. A dictionary D�m× p

was initialized with p vectors Xm×1�Ω randomly chosen, where D is

set to have twice as many columns as rows (i.e., p = 2m) as previously

done in St-Jean et al. (2016, 2017). Updates using Equation (1) were

carried for 500 iterations using a batchsize of N = 32. The coefficients

αn were unscaled afterwards.

Once a dictionary D has been computed, the new, harmonized

representation (possibly from a different scanner) can be obtained by

computing αn for every Xn � Ω. As D was created to reconstruct data

from a chosen target scanner, it contains generic features tailored to

this specific target scanner that are not necessarily present in the set

of patches Ω extracted from a different scanner. As such, reconstruc-

tion using Dtarget created from Ωtarget can be used to map Ωsource

toward Ωtarget, that is Xnharmonized
=Dtargetαn by using Xnsource and holding

Dtarget fixed while solving Equation (1) for αn. These specially designed

features from Ωtarget are not necessarily present in Ωsource, therefore

eliminating the source scanner specific effects, as they are not con-

tained in Dtarget.

Downsampling Dtarget into Dsmall can also be used to reconstruct

data at a different resolution than initially acquired by creating an

implicit mapping between two different spatial resolutions. This is

done by finding the coefficients α by holding Dsmall fixed when solving

Equation (1), but using Dtarget for the final reconstruction such that

Xnharmonized =Dtargetαn . This reconstruction with the full sized dictionary

provides an upsampled version of Xn, the implicit mapping being

guaranteed by sharing the same coefficients αn for both reconstruc-

tions. A similar idea has been exploited previously for the 3D recon-

struction of T1w images by Rueda, Malpica, and Romero (2013) and in

diffusion MRI by St-Jean et al. (2017) in the context of single image

upsampling. The general reconstruction process for the harmonization

of data sets between scanners is illustrated in Figure 1. Our

implementation of the harmonization algorithm is detailed in Appen-

dix A and also available in both source form and as a Docker container

at https://github.com/samuelstjean/harmonization (St-Jean,

Viergever, & Leemans, 2019).

3.2 | Reconstruction tasks of the challenge

For the reconstruction in task 1 (matched resolution scanner-to-

scanner mapping), the dictionary Dtarget was created using patches of

size 3 × 3 × 3 with five angular neighbors and one randomly chosen

b = 0 s/mm2 image in each block. We chose these parameters as they

have previously been shown to offer a good trade-off between accu-

racy and computation time in a previously published denoising task (St-

Jean et al., 2016). The angular patch size (i.e., how many DWIs are

included across gradients) is chosen to include all volumes at the same

angular distance on the sphere as in St-Jean et al. (2016). Optimization

for constructing Dtarget with Equation (1) was performed using three-

fold CV and reconstruction of the final harmonized data sets was done

with either CV or minimizing the AIC with Equation (2) in two separate

experiments. The data sets from the GE scanner were reconstructed

using the dictionary built from the Prisma or Connectom scanner data

sets for their respective harmonization task. For the reconstruction in

task 2 (spatial and angular resolution enhancement), patches of differ-

ent spatial sizes were extracted from the images at higher resolution

(patches of size 5 × 5 × 5 for the Prisma scanner and 6 × 6 × 6 for the

Connectom scanner) and used for the dictionary learning algorithm as

described in Section 2.1. In this task, the target data sets patch size was

chosen so that the ratio between the original patch size of 3 × 3 × 3

and the target patch size matches the ratio in spatial resolution

between the harmonized data sets as previously done in St-Jean

et al. (2017). Under the hypothesis that a larger patch is a good repre-

sentation for its lower resolution counterpart when downsampled, each

column of the optimized dictionary Dtarget was resized to a spatial

dimension of 3 × 3 × 3 and the coefficients α computed for this lower

resolution dictionary Dsmall. The patches were finally reconstructed by

multiplying the original dictionary Dtarget with the coefficients α. This

creates a set of upsampled patches from the GE scanner that are both

harmonized and at the same spatial resolution as either the Prisma or

the Connectom data sets. All reconstruction tasks were computed

overnight on our computing server using 100 cores running at 2.1 GHz.

On a standard desktop with a 4 cores 3.5 GHz processor, rebuilding

one data set took �2 hr and 30 min with the AIC criterion.

3.3 | Evaluation framework of the challenge

The original challenge requested the participants to match the original

gradient directions of the source to the target data sets and evaluated

various scalar metrics on the DWIs. In our original submission, this

matching was done with the truncated spherical harmonics (SH) basis

of order 6 (Descoteaux, Angelino, Fitzgibbons, & Deriche, 2007) on

the source data set and sampling the basis at the gradient directions
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from the target scanner. In the present manuscript, we chose instead

to evaluate the metrics directly in the original gradient directions as

they are rotationally invariant, saving one interpolation step in the

process as it could potentially introduce unwanted blurring of the

data. The metrics used in the original evaluation were the ADC and

the fractional anisotropy (FA) from DTI and the rotationally invariant

spherical harmonic (RISH) features of order 0 (RISH 0) and order

2 (RISH 2) of the SH basis, see Tax et al. (2019) for additional details.

As our evaluation framework is slightly different, a direct numerical

comparison with the results previously reported in the CDMRI chal-

lenge is not possible, even if we use the same metrics, as the exact

way to compute the metrics was not made available to the partici-

pants. This unfortunately prevents us from replicating exactly the

challenge or to exclude poorly performing regions as was done in the

original evaluation, making a comparison between the previously

reported results impossible. We compare our new approach using

automatic regularization with both the AIC and CV criterion against

our initial version of the harmonization algorithm (which included

interpolation of the DWIs using the SH basis) and a baseline reference

prediction created by trilinear interpolation from the source to the tar-

get scanner in the spirit of the original challenge.

3.4 | Data sets and experiments

We used the data sets from the CDMRI 2017 harmonization chal-

lenge (Tax et al., 2019), consisting of 10 training subjects and four test

subjects acquired on three different scanners (GE, Siemens Prisma

and Siemens Connectom) using different gradient strength (40, 80,

and 300 mT/m, respectively) with two acquisition protocols. The

study was originally approved by Cardiff University School of Psychol-

ogy ethics committee and written informed consent was obtained

from all subjects. Experiments are only reported for the four test sub-

jects, which are later on denoted as subjects' “H”, “L”, “M”, and “N.”

F IGURE 1 Schematic representation of the harmonization between scanners with adaptive dictionary learning. (a) Local patches are
decomposed into vectors Xn and a random subset is used to initialize the dictionary D. For harmonization to a scanner-agnostic space, D is
initialized with data drawn from all scanners. (b) A new set of patches is drawn at every iteration and the dictionary is refined iteratively by
alternating updates for the coefficients α and the dictionary D using Equation (1). (c) After a set number of iterations, this target dictionary D can
now be used to reconstruct data from a potentially different data set. (d) A set of coefficients is computed for each patch Xn of the input data set
with a source dictionary. For harmonization tasks, the source dictionary is the target dictionary obtained from a different scanner in step (c) and
of the same size . For upsampling tasks, the source dictionary is a downsampled version of the target dictionary. When D is constructed from data
sets acquired on multiple scanners, the reconstruction step removes variability intrinsic to a given data set which is not present in the remaining
scanners as D would not have captured this variability. (e) The harmonized reconstruction for each patch Xn is obtained by multiplying the target
dictionary D and the coefficients αn
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The standard protocol (ST) consists of 30 DWIs acquired at 2.4 mm

isotropic with a b-value of b = 1200 s/mm2, 3 b = 0 s/mm2 images

for the GE data sets, 4 b = 0 s/mm2 images for the Siemens data

sets and TE = 98 ms. Note that the TR is cardiac gated for the GE

data sets while the Siemens data sets both use TR = 7,200 ms.

The state-of-the-art (SA) protocol for the Siemens scanners contains

60 DWIs with a b-value of b = 1200 s/mm2 and 5 b = 0 s/mm2

images. The Prisma data sets were acquired with a spatial resolution

of 1.5 mm isotropic and TE/TR = 80 ms/4,500 ms. The Connectom

data sets were acquired with a spatial resolution of 1.2 mm isotropic

and TE/TR = 68 ms/5,400 ms. Most of the acquisition parameters

were shared for the SA protocol which are listed in Table 1 with

full details of the acquisition available in Tax et al. (2019). Standard

preprocessing applied by the challenge organizers on the data sets

includes motion correction, EPI distortions corrections and image reg-

istration for each subject across scanners. The SA protocols were

additionally corrected for gradient nonlinearity distortions. These

data sets are available upon request from the organizers at https://

www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/

research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-

data-harmonisation. Figure 2 shows an example of the acquired data

sets for a single subject.

3.5 | Simulations beyond the challenge

To further make our proposed harmonization algorithm widely appli-

cable, we designed additional experiments beyond the challenge to

harmonize data toward a new scanner-space. As the CDMRI challenge

focused on harmonization of data sets from a source scanner to a tar-

get scanner, the organizers essentially provided matching data sets of

all subjects across all scanners. This data collection would be appropri-

ate, for example, in a longitudinal study design with scanner hardware

upgrades during the study and subsequent data analysis. However,

such an experimental setup might not be available in practice when

harmonizing data sets from multiple centers or studies where data col-

lection is done only once per subject for example, to reduce costs

associated with scan time or reduce traveling of the participants.

The additional experiments create a new harmonization space by

randomly sampling data sets from the three scanners at once to build

the target dictionary instead of matching the GE data sets to a partic-

ular target scanner as in the previous experiments. To ensure that the

scanner effects are properly removed, the test data sets were addi-

tionally altered in a small region with a simulated free water compart-

ment as described in Section 3.6, creating additional test data sets

contaminated with simulated edema. These newly created data sets

were never “seen” by the harmonization algorithm, making it possible

to quantify if the induced effects are properly reconstructed without

discarding the natural biological variability of the data sets, as these

alterations were not present in the training set in the first place. This

experiment is similar to creating a common space on a larger set

of healthy subjects and finally harmonizing data from the remaining

healthy subjects and “patients” toward this common space. In our cur-

rent setup, the harmonization algorithm is not aware that the data

sets are in fact from matched subjects and, by design, could also be

used on unpaired training data sets.

TABLE 1 Acquisition parameters of the data sets for the three different scanners

Scanner GE 40 mT/m
Siemens Prisma 80 mT/m Siemens Connectom 300 mT/m

Protocol Standard (ST) Standard (ST) State-of-the-art (SA) Standard (ST) State-of-the-art (SA)

Sequence TRSE PGSE PGSE PGSE PGSE

# directions per b-value 30 30 60 30 60

TE (ms) 89 89 80 89 68

TR (ms) Cardiac gated 7,200 4,500 7,200 5,400

Δ/δ (ms) 41.4/26.0 38.3/19.5 41.8/28.5 31.1/8.5

δ1 = δ4/δ2 = δ3 (ms) 11.23/17.84

Acquired voxel size (mm3) 2.4 × 2.4 × 2.4 2.4 × 2.4 × 2.4 1.5 × 1.5 × 1.5 2.4 × 2.4 × 2.4 1.2 × 1.2 × 1.2

Reconstructed voxel size (mm3) 1.8 × 1.8 × 2.4 1.8 × 1.8 × 2.4 1.5 × 1.5 × 1.5 1.8 × 1.8 × 2.4 1.2 × 1.2 × 1.2

SMS factor 1 1 3 1 2

Parallel imaging ASSET 2 GRAPPA 2 GRAPPA 2 GRAPPA 2 GRAPPA 2

Bandwidth (Hz/Px) 3,906 2004 1,476 2004 1,544

Partial Fourier 5/6 — 6/8 6/8 6/8

Coil combine Adaptive combine Sum of squares Adaptive combine Adaptive combine

Head coil 8 channel 32 channel 32 channel 32 channel 32 channel

Note: The table is adapted from Tax et al. (2019), available under the CC-BY 4.0 license.

Abbreviations: Hz/Px, Hertz/Pixel; PGSE, pulsed-gradient spin-echo; SMS, Simultaneous multi-slice; TE, echo time; TR, repetition time; TRSE, twice-

refocused spin-echo.
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3.6 | Alterations of the original data sets

To create the altered version of the test data sets, a region of 3,000

voxels (15 × 20 × 10 voxels) in the right hemisphere was selected at

the same spatial location in image space. The size of the region is kept

constant throughout experiments and subjects to facilitate statistical

analysis and comparisons. Every voxel in the selected region was sep-

arately affected by a free water compartment to mimic infiltration of

edema according to

Sbaltered = Sb + fS0exp −bDcsfð Þ ð3Þ

with Sbaltered the new signal in the voxel, Sb the original signal in the

voxel at b-value b and S0 the signal in the b = 0 s/mm2 image, f is the

fraction of the free water compartment, which is drawn randomly for

every voxel from a uniform distribution U(0.7,0.9) and Dcsf = 3×10−3

mm2/s is the nominal value of diffusivity for free water (e.g., cerebro-

spinal fluid [CSF]) at 37 degrees celsius (Pasternak, Sochen, Gur,

Intrator, & Assaf, 2009; Pierpaoli & Jones, 2004). As the individual

subjects across scanners are only registered to their counterpart

across scanners, the affected region will be approximately (up to

errors due to registration) at the same spatial location in each subject.

This location will, however, be slightly different between subjects,

which introduces normal variability in terms of the number of white

matter and gray matter voxels that would be affected by edema and

their location in a cohort of patients.

3.7 | Evaluation metrics

3.7.1 | Error and accuracy of predicted metrics

We reproduced parts of the analyses conducted in the original CDMRI

challenge from Tax et al. (2019), namely the per voxel error for

each metric as computed by the mean normalized error (MNE) and

the voxelwise error. Denoting the target data to be reproduced

as acquired (Prisma or Connectom scanners) and the source data to

be harmonized as predicted (GE scanner), the MNE is defined as

MNE = |(predicted – acquired)| / acquired and the error is defined as

error = predicted – acquired. The MNE is a relative metric, penalizing

more when the error is large relative to the target value, while the

error itself only measures the magnitude of the mistake, but can indi-

cate global under or overestimation with the sign of the metric. A

small error with a large MNE would likely indicate that most of the

mistakes committed by an algorithm are in regions where the metric

of interest is low. The original challenge reports values taken either

globally in a brain mask, in FreeSurfer regions of interest (ROI) and

excluding poorly performing regions or the median value computed in

sliding windows. Since the masks of these ROIs were not released for

the challenge, we instead report boxplots of the two metrics using the

brain masks from the challenge as this reports the global median error

in addition to the global mean error and additional quantiles of their

distribution. To prevent outliers from affecting the boxplots (particu-

larly located at the edges of the brain masks), we clip the MNE and

error values at the lowest 0.1% and largest 99.9% for each data set

separately.

3.7.2 | Kullback–Leibler divergence as a measure
of similarity

As the voxelwise difference may not be fully indicative of the global

trend of the harmonization procedure between data sets (e.g., due

to registration errors), we also computed the Kullback–Leibler (KL)

divergence (Kullback & Leibler, 1951) between the distributions of

each harmonized data set from the GE scanner and its counterpart

from the target scanner for each of the four metrics. The KL diver-

gence is a measure of similarity between two probability distributions

F IGURE 2 Example b = 0 s/mm2 images (top row) and b = 1200 s/mm2 images (bottom row) for a single subject acquired on the three
scanners after preprocessing. The standard protocol (ST) is shown on the left and the state-of-the-art protocol (SA) is shown on the right. Note
that the challenge asked participants to harmonize the GE ST protocol toward the two other scanners, but no SA protocol is available for the GE
scanner. The figure is adapted from Tax et al. (2019), available under the CC-BY 4.0 license
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P(x) and Q(x) where lower values indicate a higher similarity and KL

(P, Q) = 0 when P(x) = Q(x). In its discrete form, the Kullback–Leibler

divergence is given by

KL P,Qð Þ=
X
k

Pk log
Pk
Qk

� �
, ð4Þ

where Pk is the candidate probability distribution, Qk the true proba-

bility distribution and k represents the number of discrete histogram

bins. The measure is not symmetric, that is KL(P, Q) 6¼ KL(Q, P) in gen-

eral. We instead use the symmetric version of the KL divergence as

originally defined by Kullback and Leibler (1951).

KLsym =KL P,Qð Þ+KL Q,Pð Þ: ð5Þ

In practice, a discrete distribution can be constructed from a set

of samples by binning and counting the data. By normalizing each bin

so that their sum is 1, we obtain a (discrete) probability mass function.

For each metric, the discrete distribution was created with k = 100

equally spaced bins. We also remove all elements with probability

0 from either Pk or Qk (if any) to prevent division by 0 in Equation (4).

As the binning procedure does not share the same bins between

scanners, the results can not be compared directly between the Con-

nectom and Prisma scanners.

3.7.3 | Statistical testing and effect size in the
presence of alteration

To evaluate quantitatively if the harmonization algorithm did not

remove signal attributable to genuine biological variability, we com-

puted the percentage difference between the harmonized test data

sets in the affected region of 3,000 voxels before alteration and after

alteration as given by Equation (6)

100×
harmonized−baseline

baseline

� �
−

harmonized_altered−baseline_altered
baseline_altered

� �
,

ð6Þ

where baseline (resp. harmonized) denotes the data sets before

(resp. after) harmonization and the suffix altered indicates the data

sets altered with simulated edema. A value close to 0 therefore

indicates that the harmonization procedure performed similarly in

reducing variability attributable to differences in the scanner for

harmonization of the regular data sets and in the presence of alter-

ation. To investigate the magnitude of these differences, we con-

ducted Student's t-test for paired samples for each subject separately

(Student, 1908). This was done on both the normal data sets (testing

between scanners) and the altered data sets (testing between scan-

ners and additionally between the normal and altered data sets).

The p-values from the tests were subsequently corrected for the

false discovery rate (FDR) at a level of α = 0.05 (Benjamini &

Hochberg, 1995). In addition, we also report the effect size of those

paired t-tests as computed by Hedges' g (Hedges, 1981;

Lakens, 2013), which we redefine as

g =
μ1−μ2j j

σ1 + σ2ð Þ=2 × 1−
3

4 n1 + n2ð Þ−9

� �
, ð7Þ

where μi, σi, and ni are the mean, the SD, and the size of sample i,

respectively. A value of g = 1 indicates that the difference between

the means is of one SD, with larger values indicating larger effect sizes

as reported by the difference in the group means. In the original defi-

nition of Hedges (1981), g is not enforced to be positive. We instead

report the absolute value of g as we do not know a priori which mean

is larger than the other, but are only interested in the magnitude

of the effect rather than its sign. With this definition, values of g

reported for the test between a given subject for two different scan-

ners which are lower than the reference method indicate an improve-

ment by removing scanner specific effects. On the other hand, similar

values of g between the reference and the harmonized data set for a

given subject and its altered counterpart on the same scanner indi-

cates preservation of the simulated effects as it is the only difference

between these two data sets by construction.

4 | RESULTS

4.1 | Results from the challenge

4.1.1 | Mapping between scanners for matched
acquisition protocols

Figure 3 shows the KL symmetric divergence as presented in

Section 3.7 for the standard protocol. In general, the baseline has a

higher KL value than the other methods on the Connectom scanner.

The CV based method is generally tied or outperforms the AIC based

method. For the Prisma scanner, results show that the AIC performs

best with the CV based method following the baseline reference. In

the case of the ADC metric, our initial algorithm outperforms the

three other methods for some subjects.

Figure 4 shows the distribution (as boxplots) in the absolute MNE

and mean error of the four metrics for the standard protocol. The MNE

is almost tied or slightly higher for the baseline method than the alter-

natives for both scanners. For the FA and RISH 2 metrics, the baseline

error is tied or larger than the other methods. For the voxelwise error,

all methods underestimate the ADC and overestimate the RISH 0 on

average while the FA and RISH 2 metrics show a different pattern

depending on the scanner. For the Connectom scanner, the CV based

method generally has an average error around 0 for the FA while

the AIC and our initial algorithm generally overestimate the metric.

The baseline is on the other spectrum and generally underestimates

the FA. On the Prisma scanner, the effect is reversed; there is a general

overestimation of the FA while the error committed by the AIC based

method is in general close to 0. The RISH 2 error follows the same pat-

tern as the FA error on both scanners for the four compared methods.

8 ST-JEAN ET AL.



4.1.2 | Mapping between scanners across spatial
resolutions

Figure 5 shows the KL symmetric divergence for the second task of

the challenge, mapping the GE ST protocol data sets to the SA proto-

cols of the Prisma or Connectom scanners. For the Connectom scan-

ner, the AIC based algorithm and our initial algorithm, which is also

AIC based, performs best in most cases. The CV based algorithm also

outperforms the baseline method for the ADC and RISH 0 metrics.

For the Prisma scanner, the AIC outperforms most of the compared

methods or is tied with the CV. Notably, the baseline ranks second for

the FA and RISH 2 metrics, but is the worst performer for the ADC

and the RISH 0 metrics.

Figure 6 shows results for the absolute MNE and mean error for

all algorithms on harmonizing the SA protocol. For the Connectom

scanner, the baseline ranks last for most subjects on the isotropy met-

rics (ADC and RISH 0) while it only performs slightly better than the

CV based algorithm for the anisotropy metrics (FA and RISH 2). On

the Prisma scanner, results are similar for the ADC and RISH 0 metrics.

For the FA metrics, the best performance is obtained with the AIC

based method while the baseline is better for harmonizing the RISH

2 metric for three of the subjects.

Now looking at the mean error, results show that the ADC metric

is underestimated for all methods and on both scanners with the

three methods usually outperforming the baseline comparison. The FA,

RISH 0 and RISH 2 metrics are instead overestimated. For the FA met-

ric, the AIC and our initial algorithm commit less error on average

than the baseline on the Connectom scanner. On the Prisma scanner,

only the AIC has an average error lower than the baseline. All methods

perform better or almost equal on average to the baseline comparison

for the RISH 0 metric. The RISH 2 metric shows a scanner dependent

pattern; on the Connectom scanner, the best performing method is our

initial algorithm followed by the AIC based algorithm while on the Pri-

sma scanner, the lowest error is achieved by the AIC based method.

In general, results show that the isotropy metrics (ADC and RISH

0) are subject to global scanner effects while the anisotropy metrics

(FA and RISH 2) may be subject to orientation dependent effects.

These effects are also likely different for each scanner since the gradi-

ent strength and timings are different, even if the b-values are mat-

ched. In these experiments, the target scanner is untouched and

therefore still contains its own scanner effect when computing the

voxelwise error of each harmonization algorithm.

4.2 | Mapping original and altered data sets
toward a common space

In these experiments, alterations were made to the test set as previ-

ously described in Section 3.6. As these altered data sets were never

used for training, we can quantify the removal of scanner effects

and the preservation of the alterations by comparing solely the altered

regions with their original counterpart in each subject, free of

processing effects. In these experiments, the baseline comparison is

to not process the data sets at all since the data sets are altered

versions of themselves, therefore not requiring any interpolation or

resampling. As these experiments are outside of the challenge's scope,

they are not covered by our initial algorithm and therefore the “initial”

category is not presented in this section. Figure 7 shows the original

F IGURE 3 KL symmetric divergence (where lower is better) for the harmonization task at the same resolution between the GE ST data sets
and the Connectom ST (top row) or the Prisma ST (bottom row) data sets on the four test subjects (“H”, “L”, “M”, and “N”). Each metric is
organized by column (ADC, FA, RISH 0 and RISH 2) for the four compared algorithms (AIC in blue, CV in orange, our initial version of the
harmonization algorithm in green and the baseline comparison in red)
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and altered metrics for one subject on the raw data and after harmo-

nization with the AIC and CV based algorithms and Figure 8 shows

the relative percentage difference between the raw data sets and

their harmonized counterpart. We define the relative percentage

difference as difference = 100 × (harmonized − raw)/raw. The alter-

ations are mostly visible on the b = 0 s/mm2 image while the

b = 1200 s/mm2 image is only slightly affected due to the high diffu-

sivity of the CSF compartment.

However, the differences are visible on the diffusion derived maps,

seen as an increase in ADC and a reduction for the FA, RISH 0 and

RISH 2 metrics. Visually, harmonized data sets do not seem different

from their original counterpart, but the difference maps show that small

differences are present with the CV method generally showing larger

differences than the AIC method. Notably, the anisotropy metrics

(FA and RISH 2) are lower after harmonization while the difference for

the isotropy metric (ADC and RISH 0) is distributed around 0.

Figure 9 shows the relative percentage difference as boxplots

for all test subjects and all scanners between the altered and normal

regions. A low difference indicates that the signal removed after har-

monization is the same in the baseline and altered data sets, that is the

algorithm performs similarly in the presence (or not) of the simulated

edema. The CV algorithm produces larger relative differences than the

AIC based algorithm after harmonization between the reference and

altered data sets. The larger differences are in the anisotropy metrics

F IGURE 4 Boxplots of the voxelwise mean normalized error (top) and error (bottom) for each metric, following the same conventions
detailed in Figure 3. The black dot shows the mean error and the dashed line indicates an error of 0, representing a perfect match between the
harmonized GE data set and the data set for the target scanner
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(FA and RISH 2) while the differences in isotropy metrics (ADC and

RISH 0) are smaller on average. At this stage, it is unclear however

if harmonization with the AIC regularization still contains variability

attributable to the scanner or if the CV criterion is too aggressive and

mistakenly removed variability due to genuine anatomical variation.

Figure 10 shows the relative percentage difference that is originally

present in the data sets between every pair of scanners, but before

applying harmonization and alterations. This represents the amount

of natural variability present in the diffusion metrics between scanners

for each subjects in the region which is altered at a later stage. We do

not show the signal value for the b = 0 s/mm2 and b = 1200 s/mm2

images since the scanners are not using the same signal scaling.

Figure 11 shows boxplots of the effect size as computed by

a paired t-test after harmonization toward a common space for all

scanners. Tests were conducted for every subject between each scan-

ner in addition to the altered versions of the data sets as previously

described in Section 3.7. For the ADC metric, both methods yield a

lower effect size on average than the raw, unprocessed data and pre-

serve the effect size due to the alterations as shown in the middle

row. The RISH 0 metric shows similar behavior with the CV based

method producing an average effect size slightly higher than the raw

data sets. Now looking at the anisotropy metrics (FA and RISH 2), the

effect size is reduced or equal on average in most cases (except for

subject “H” when only one scan is altered) when scans are harmonized

with the AIC algorithm. The CV based algorithm shows a higher effect

size for harmonization between scans and a lower effect size when

both scans are altered. As we only report the absolute value of the

effect size, this is due to both a lower group mean and group SD than

the raw data sets. This difference in group means and group SD pre-

vents a direct comparison of results between each rows, which can

not be directly compared as they are unlikely to share a common

numerator or denominator. The harmonization process is likely only

removing scanner effects present in each data set as the middle row

(where only one of the compared data set is affected) shows similar

reductions in effect size, but is still on the same magnitude as the raw

data sets since the alteration is preserved.

Figure 12 shows the effect size, with a 95% confidence interval

(CI), for the paired t-test between the original and altered data sets

on each scanner. While Figure 11 showed the general trend for all

results, we instead now focus on the effect size attributable solely to

the alterations we previously induced. Results show that the ADC and

RISH 0 metrics have the smallest CI, showing the lowest variability in

the 3,000 voxels in the altered region. All CI are overlapping and

therefore have a 95% chance of containing the true mean effect size

for every case. The FA and RISH 2 metrics have both larger CI, show-

ing larger variability in their sample values, but are overlapping with

the raw data sets CI in most cases. Only the CV based harmonization

method CI is outside the raw data sets CI for two cases. This shows

that the effect size is likely preserved after applying the harmonization

algorithm in most cases since the only source of variability is the

effects we induced in that region to create the altered data sets.

The individual effect sizes, p-values and other intermediary statistics

for every tested combination that generated the boxplots shown in

Figure 11 are available as Supplementary materials.

5 | DISCUSSION

5.1 | Reducing variability across scanners

We have presented a new algorithm based on dictionary learning

to harmonize data sets acquired on different scanners using the

F IGURE 5 Symmetric KL divergence (where lower is better) for the harmonization task across resolution between the GE ST data sets and
the Connectom SA (top row) or the Prisma SA (bottom row) data sets. The organization is the same as previously used in Figure 3
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benchmark database from the CDMRI 2017 harmonization challenge

(Tax et al., 2019). The flexibility of the method lies in its ability to pool

data sets from any scanner, without the need of paired data sets

or spatial correspondence, by adapting the regularization parameter λi

automatically to each subset of training examples in Equation (1),

ensuring that the relevant information to reconstruct the data are

encoded in the dictionary D. Only features deemed important to the

reconstruction are stored as the ℓ1 norm on the coefficients α encour-

ages a sparse reconstruction and forces most of the coefficients to

zero (Candès, Wakin, & Boyd, 2008; Daubechies, Devore, Fornasier, &

Güntürk, 2010; St-Jean et al., 2016). In the reconstruction step, a new

value of λi is automatically selected for each reconstructed patch,

ensuring that the regularization is tuned uniquely so that the recon-

struction matches the original patch, but using only features found in

the target scanner. This is of course at the cost of additional computa-

tions since a least-square problem needs to be solved for each candi-

date value λi, but convex and efficient numerical routines reusing the

previous solution as a starting point can be used to alleviate computa-

tional issues (Friedman et al., 2010). To the best of our knowledge,

this is the first case where an automatic search of the regularization

parameter has been used in both stages of the optimization.

For the reconstruction step, we introduced two alternatives to

compute λi through the AIC or CV using held out parts of the signal.

While other choices are possible, such as the Bayesian information cri-

terion (Schwarz, 1978), we chose here the AIC for simplicity and

because it is in fact equivalent to leave one out CV in the asymptotic

limit (Stone, 1977). Cross-validation was done with a classical approach

as done in statistics, predicting the signal on parts of the current

F IGURE 6 Boxplots of the voxelwise mean normalized error (top) and error (bottom) of each metric for the four algorithms. The black dot
shows the mean error and the dashed line indicates an error of 0. The organization follows the conventions of Figure 4
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reconstructed patch as opposed to, for example, reconstructing a

completely separate patch with the same value of λi as may be done in

machine learning. This could explain why the AIC based method per-

formed better than the CV criterion for the anisotropy metrics in the

SA protocol since the held out data, which is selected at random for

every case, may sometimes unbalance the angular part of the signal

because of the random splitting process used during CV. The AIC

would not be affected as it can access the whole data for prediction

but instead penalizes reconstructions that do not substantially reduce

the mean ℓ2 error and are using too many coefficients—a likely situa-

tion of overfitting. This also makes the AIC faster to compute since

there is no need to refit the whole model from the beginning unlike

the CV. While we used three-fold cross-validation in this work to

limit computations, better results may be obtained by increasing the

F IGURE 7 Examplar slice of subject “H” on the GE scanner as original (left half) and altered (right half) metrics. Only the affected portion of
the data (as shown in the yellow box) is analyzed in paired statistical testing against the same location in the original data set. Each column shows
(from left to right) a b = 0 s/mm2 image, a DWI at b = 1200 s/mm2, the FA, ADC, RISH 0 and RISH 2 metrics with a common colorbar per column.
The top row shows the raw data, the middle row shows the data harmonized using the AIC and the bottom row shows the harmonized data using
the CV. The b = 0 s/mm2 image, the DWI and the ADC map increase after adding the free water compartment while the FA, RISH 0 and RISH
2 metrics are instead lower in their altered counterpart

F IGURE 8 Examplar slice of subject “H” on the GE scanner as original (left half) and altered (right half) metrics with the yellow box indicating
the altered region specifically. Each column shows (from left to right) a b = 0 s/mm2 image, a DWI at b = 1200 s/mm2, the ADC, FA, RISH 0, and
RISH 2 metrics with a common colorbar per column as in Figure 7. The top row (resp. the bottom row) shows the relative percentage difference
between the harmonized data using the AIC (resp. the CV) and the raw data. If the affected region is similar in both images, this means that the
harmonization algorithm did not remove the artificial alterations that were introduced and only removed variability attributable to the scanner
equally in both cases
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number of folds held out in total as additional data would be available

at each step. However, it is important to keep in mind that the whole

model needs to be fitted K-times for K-fold cross-validation, which

may be prohibitive from a computational standpoint if many data sets

are to be harmonized.

One major advantage of the harmonization approach we presented

is its ability to process raw data sets without the requirement of paired

samples or spatial alignment during training. In our experiments, the data

were given at random for the training phase and we mixed patches from

all subjects and all scanners altogether in the additional experiments we

described in Section 3.5, preventing overfitting to a particular scanner in

the process. Other approaches instead go through an alternative repre-

sentation such as the SH basis (Blumberg et al., 2019; Cetin Karayumak

et al., 2019; Mirzaalian et al., 2016) or harmonize only the extracted sca-

lar maps from diffusion MRI instead (Alexander et al., 2017; Fortin

et al., 2017). In the latter cases, it is not clear if the mapping developed

for a particular scalar map is in fact similar between metrics as scanner

effects may behave differently, for example, isotropy metrics may be

subject to global effects while anisotropy metrics may exhibit orienta-

tional bias due to low SNR in some given gradient directions. We also

observed in our experiments that the error for the ADC and RISH 0 met-

rics were similar for most methods while the error was larger for the

FA and RISH 2 metrics for the baseline method, which are orientation

dependent. This shows that the “optimal” mapping function could

likely be task dependent if one wants to harmonize directly the scalar

maps between scanners, which could complicate interpretation between

studies that are not using a matched number of b-values or gradient

orientation. In the original CDMRI challenge (Tax et al., 2019), the

best performing algorithm for some cases of the anisotropy metrics was

the baseline algorithm. This was attributed to the blurring resulting of

the SH basis interpolation in the angular domain with a trilinear interpo-

lation when the spatial resolution of the data sets is not matching.

These results were obtained by applying the harmonization on the GE

scanner data sets only while leaving the target scanners (Prisma

and Connectom) data sets intact. This task consists in matching the dis-

tribution from a source scanner to a target scanner, but without harmo-

nizing the target scanner. This blurring introduced by interpolation could

also explain why the baseline method outperforms some of the com-

pared algorithms for the KL divergence in Figures 3 and 5 as this SH

interpolation step was not included in the AIC or CV algorithms of this

manuscript.

In the additional experiments, we introduced the idea of creating a

neutral scanner-space instead of mapping the data sets toward a single

target scanner. We also harmonized data sets that had been altered

toward that common space and showed that the induced effect sizes

are preserved while at the same time preserving normal anatomical

variability. This approach has the benefit of removing variability attrib-

utable to multiple scanners, instead of trying to force a source scanner

to mimic variability that is solely attributable to a target scanner. It is

also important to mention here that a good harmonization method

should remove unwanted variability due to instrumentation, all the

while preserving genuine anatomical effects as also pointed out previ-

ously by Fortin et al. (2017). While this statement may seem obvious,

success of harmonization toward a common space is much more diffi-

cult to quantify than harmonization between scanners since we can

not look at difference maps between harmonized data sets anymore.

As a thought experiment, a harmonization method that would map all

data sets toward a constant value would show no difference between

F IGURE 9 Boxplots of the percentage difference between the harmonized data sets with and without alteration for all subjects for the AIC
and CV criterion in the altered region only. The top row shows the difference for the GE scanner, the middle row for the Prisma scanner and the
bottom row for the Connectom scanner. A value close to 0 indicates that the harmonization procedure removed a similar amount of the signal in
the reference data sets and in the altered data sets
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the harmonized data sets themselves, therefore entirely removing

all variability. It would however commit very large errors when com-

pared against the original version of those same data sets. From

Figure 7, we see that the harmonized data sets are similar to their orig-

inal version, but Figures 8 and 9 show that the CV based algorithm has

larger relative differences with the data before harmonization. It is,

however, not obvious if the CV based algorithm is removing too much

variability by underfitting the data or if the AIC based method is not

removing enough, overfitting the data. Figure 12 suggests that the

CV criterion might underfit the data due to the lower effect size, but

this could be due to using only three fold CV in our experiments to

limit computation time. Results might be improved by using more folds

as the AIC approximates the CV as we have previously mentioned.

Our recommendation is therefore to use the AIC criterion on large

cohort where computation resources are limited, but improvements

could be possible by increasing the number of folds for CV or even

using a separate test set to build the dictionary if enough data is avail-

able to do so.

5.2 | Dependence of isotropy and anisotropy
metrics on scanning parameters

While it is usually advocated that protocols should use similar scanning

parameters as much as possible to ensure reproducibility, this is not

always easily feasible depending on the sequences readily available

from a given vendor and differences in their implementations. Subtle

changes in TE and TR influence the measured signal as shown in

Figure 13 by changing the relative T2 and T1 weighting of the mea-

sured diffusion signal, respectively. While dMRI local models are usually

applied on a per voxel basis, changes in these weightings will yield

different values of the diffusion metrics, which makes comparisons

between scans more difficult as the weighting depends on the different

(and unknown) values of T1 and T2 of each voxel (Brown, Haacke,

Cheng, Thompson, & Venkatesan, 2014, Chap. 8). Even if these changes

are global for all voxels, matched b-values are not sufficient to ensure

that the diffusion time is identical between scans as changes in TE influ-

ence diffusion metrics such as increased FA (Qin et al., 2009), but this

F IGURE 10 Boxplots of the percentage difference (before harmonization) between data sets acquired on different scanners in the selected
region before alterations. The top row shows the difference between the GE scanner and Prisma scanner, the middle row between the GE and
Connectom scanner and the bottom row between the Prisma and the Connectom scanner. In this case, the percentage difference is computed as
100× scanner1−scanner2j j

scanner1+ scanner2ð Þ=2, similarly to Equation (6)

ST-JEAN ET AL. 15



effect may only manifest itself at either long or very short diffusion

times in the human brain (Clark, Hedehus, & Moseley, 2001; Kim,

Chi-Fishman, Barnett, & Pierpaoli, 2005). Proper care should be taken

to match the diffusion time beyond the well-known b-value, which may

not always be the case if different sequences are used for example,

PGSE on the Siemens scanners and TRSE on the GE scanner as used in

this manuscript. Additional effects due to gradients and b-values spatial

distortions (Bammer et al., 2003) could also adversely affect the diffu-

sion metrics, especially on the Connectom scanner as it uses strong

gradients of 300 mT/m (Tax et al., 2019). Isotropy metrics are not

necessarily free of these confounds as gradients nonlinearity create

a spatially dependent error on the b-values (Paquette, Eichner, &

Anwander, 2019). This could explain the larger mean error for the CV

and baseline methods on the Connectom scanner harmonization task,

especially for the anisotropy metrics. While correcting for these effects

is not straightforward, gradient timings should be reported in addition

to the usual parameters (e.g., TE, TR, b-values and number of gradient

directions) in studies to ease subsequent harmonization. Accounting for

these differences during analysis could be done for example, by

using a (possibly mono-exponential) model including diffusion time and

predicting the diffusion metrics of interest at common scanning param-

eters values between the acquisitions to harmonize.

5.3 | Limitations

5.3.1 | Limitations of harmonization

As Burnham and Anderson (2004) stated, “in a very important sense,

we are not trying to model the data; instead, we are trying to model

the information in the data”. This is indeed the approach taken in the

challenge by the participants, the four other entries relying on deep

learning and neural networks for the most part with all methods

(including ours) optimizing a loss function which considered the dif-

ference between the original and the harmonized data set. With the

rapid rise of the next generation of deep learning methods such as

F IGURE 11 Boxplots of Hedges' g effect size for each metric with the mean value as the black dot. The raw data are shown in red
(no harmonization), the data harmonized with the AIC in blue and finally the data harmonized with the CV in orange, similarly to the previous
figures. The top row shows the effect size when both data sets are in their original version (None of the data sets are altered), the middle row
when Only one of the data set is altered and the bottom row when Both data sets are altered as indicated on the right of each row. The top and
bottom row are only affected by scanner effects. The middle row shows larger effects size due to one of the compared data set being altered in
addition to the scanner effects
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generative adversarial networks (GAN) and extensions (Goodfellow

et al., 2014), it is now possible to instead model implicitly the distribu-

tion of the data. This allows generation of data sets from a completely

different imaging modality such as synthesizing target CT data sets

from source MRI data sets (Wolterink et al., 2017). However, if

proper care is not taken to sample truthfully the distribution of the

data (e.g., not including enough tumor samples in a harmonization

task between data sets with pathological data), this can lead to severe

issues. Cohen, Luck, and Honari (2018) recently showed that in such

a case, GAN based methods could try to remove the pathology in the

data to match the distribution of healthy subjects that the method

previously learned, precluding potential applications to new data sets

or pathological cases not represented “well enough” in the training

set. The same concept would likely apply to systematic artifacts; if

every data set from a target scanner is corrupted by, for example, a

table vibration artifact, it may very well be possible that a harmoniza-

tion algorithm will try to imprint this artifact to the source data sets

to match the target data sets. The same remark would apply to our

harmonization algorithm; if systematic artifacts are in the data, the

learned dictionary may very well try to reconstruct these systematic

artifacts. However, when rebuilding the source data set using this

corrupted target dictionary, we expect that the artifact would be

mitigated since it would not appear in the source data set and hence

should not be reconstructed by Equation (1) as it would penalize the

ℓ2 norm part of the cost function. This remark also applies to normal

variability of the subjects; if the training data sets are too heteroge-

neous (e.g., young and healthy subjects mixed in with an older popu-

lation affected by a neurological trait of interest), harmonization

algorithms may mistakenly identify (and subsequently remove) infor-

mation attributable to biological differences between subjects rather

than scanner variability. It is therefore implicitly assumed in our algo-

rithm that the data sets to harmonize are representative and well

matched (e.g., age, gender) when removing scanner-only differences

as other sources of expected variability can be alternatively included

in the statistical testing step of the study at hand. While offering

a promising avenue, care must be taken when analyzing harmoniza-

tion methods to ensure that they still faithfully represent the data

as optimal values of the cost functions themselves or “good” recon-

struction of the diffusion metrics only may not ensure this fact

(Rohlfing, 2012).

F IGURE 12 Hedges' g effect size for each metric between the original and altered data sets on the same scanner with a 95% CI. The top row
shows the effect size between the original and altered data set on the GE scanner, the middle row for the Prisma scanner and the bottom row for
the Connectom scanner. Most of the CI are overlapping except for the CV in the cases of subject “L” on the GE scanner and subject “H” on the
Prisma scanner. This effect size is only due to the alterations performed in the experiments and is free of any other source of variability, such as
registration error or scanner effects
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5.3.2 | Limitations of our algorithm and possible
improvements

Our additional experiments with simulated free water have shown

how harmonization can, to a certain extent, account for data abnor-

malities not part of the training set. However, the presence of CSF

and the boundary between gray matter and CSF (or a linear combina-

tion of those elements) may yield enough information for the recon-

struction to encode these features in the dictionary. This can provide

new elements that are not used for the reconstruction of normal

white matter but may be useful for the altered data in the experi-

ments. It is not necessarily true that this property would also be valid

for other neurological disorders such as tumors, especially if their fea-

tures are not well represented in the training data as we have men-

tioned previously in Section 5.3. Another aspect that we did not

explicitly cover is multishell data, that is, data sets acquired with mul-

tiple b-values, which was in fact part of the following CDMRI chal-

lenge (Ning et al., 2019). Nevertheless, our method can still be used

on such data sets, but would not be aware of the relationship

between DWIs beyond the angular domain. Other approaches to

build the dictionary could be used to inform the algorithm and poten-

tially increase performance on such data sets by explicitly modeling

the spatial and angular relationship (Schwab et al., 2018) or using an

adaptive weighting considering the b-values in the angular domain

(Duits, St-Onge, Portegies, & Smets, 2019) amongst other possible

strategies. This weighting strategy could be used for repeated acqui-

sitions or if multishell data sets without an equal repartition of the

data across shells needs to be harmonized instead of the strictly

angular criterion we used in this manuscript. Note however that

redefining the extraction step would only affect the initial creation

of the patches as defined in Appendix A, leaving Equation (1)

unchanged. Modeling explicitly the angular part of the signal could

also be used to sample new gradients directions directly, an aspect

we covered in the original CDMRI challenge by using the spherical

harmonics basis (Descoteaux et al., 2007). Correction for the nature

of the noise distribution could also be subsequently included as a

processing step before harmonization since reconstruction algorithms

vary by scanner vendor (Dietrich et al., 2008; St-Jean et al., 2020),

leading to differences between scans due to changes in the noise

floor level (Sakaie et al., 2018). Improvements could also potentially

be achieved by considering the group structure shared by over-

lapping patches when optimizing Equation (1) (Simon, Friedman,

Hastie, & Tibshirani, 2013). While this structure would need to be

explicitly specified, optimizing jointly groups of variables has recently

led to massive improvements in other applications of diffusion MRI

such as reduction of false positive connections in tractography

(Schiavi et al., 2019). In the end, the aim of harmonization procedures

is to reduce variability arising from nonbiological effects of interest

in the application at hand. Future benefits for this class of methods

should therefore be evaluated on the end result of a study, rather

than using proxy metrics of the diffusion signal for evaluation as

is commonly done. In the current work, registration errors or mis-

alignment between subjects may influence negatively the evaluation

of the algorithms as previously outlined in the CDMRI challenge

(Tax et al., 2019), even though a priori alignment is not an assumption

of the presented harmonization algorithm. Further validation of the

F IGURE 13 Example b = 0 s/mm2 images for the standard protocol (top row) and the state-of-the-art protocol (bottom row) for a single
subject acquired on the three scanners at different combinations of TE and TR. Note that the b = 0 s/mm2 image for the GE scanner was only
acquired at a single TE with a cardiac gated (CG) TR. The figure is adapted from Tax et al. (2019), available under the CC-BY 4.0 license
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proposed harmonization algorithm is therefore planned on a large-

scale retrospective multicenter study to evaluate the effect of harmo-

nization on clinical outcomes.

6 | CONCLUSIONS

In this paper, we have developed and evaluated a new harmonization

algorithm to reduce intra and inter scanner differences. Using the pub-

lic database from the CDMRI 2017 harmonization challenge, we have

shown how a mapping to reduce variability attributable to the scan-

ning protocol can be constructed automatically through dictionary

learning using data sets acquired on different scanners. These data sets

do not require to be matched or spatially registered, making the algo-

rithm applicable in retrospective multicenter studies. The harmoniza-

tion can also be done for different spatial resolutions through careful

matching of the ratio between the spatial patch size used to build the

dictionary and the spatial resolution of the target scanner. We also

introduced the concept of mapping data sets toward an arbitrary

scanner-space and used the proposed algorithm to reconstruct altered

versions of the test data sets corrupted by a free water compartment,

even if such data was not part of the training data sets. Results have

shown that the effect size due to alterations is preserved after harmo-

nization, while removing variability attributable to scanner effects in

the data sets. We also provided recommendations when harmonizing

protocols, such as reporting the gradient timings to inform subsequent

harmonization algorithms which could exploit these values across stud-

ies. As perfect matching of scanner parameters is difficult to do in

practice due to differences in vendor implementations, an alternative

approach could be to account for these differences through models of

diffusion using these additional parameters. Nevertheless, as the algo-

rithm is freely available, this could help multicenter studies in pooling

their data while removing scanner specific confounds and increase sta-

tistical power in the process.
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APPENDIX

The harmonization algorithm

This appendix outlines the harmonization algorithm in two separate

parts. Algorithm 1 first shows how to build a target dictionary as

depicted in the top part of Figure 1. The bottom part of the diagram

shows how to rebuild a data set given the dictionary and is detailed in

Algorithm 2. Our implementation is also freely available at https://

github.com/samuelstjean/harmonization (St-Jean et al., 2019).

Algorithm 1

The proposed harmonization algorithm - building a

target dictionary

Data: Data sets, patch size, angular neighbor

Result: Dictionary D

Step 1: Extracting patches from all data sets;

foreach Data sets do

Find the closest angular neighbors;

Create a 4D block with a b = 0 s/mm2 image and the

angular neighbors;

Extract all 3D patches and store the result in an array Ω;

end

Step 2: Build the target dictionary;

while Number of max iterations not reached do

Randomly pick patches from Ω;

Solve Equation (1) for α with D fixed;

Solve Equation (1) for D with α fixed using for example,

Mairal et al. (2010, Algorithm 2);

end

Algorithm 2

The proposed harmonization algorithm -

reconstruction of the harmonized data

Data: Data set, dictionary

Result: Harmonized data set

Step 1: Extracting patches from the data set to harmonize;

foreach Data set do

Find the closest angular neighbors;

Create a 4D block with a b = 0 s/mm2 image and the

angular neighbors;

Extract all overlapping 3D patches and store the result

as Ω;

end

if Matching across spatial resolution then

Downsample D into Dsmall spatially before reconstruction;

else

D small = D;

end

Step 2: Find the harmonized patch;

foreach patches � Ω do

Find the coefficients α by solving Equation (1) for Dsmall

fixed;

Find the harmonized representation X = Dα;

end

foreach patches � Ω do

Put back each patch at its spatial location and average

overlapping parts;

end
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