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If it’s on the Internet, then it must be true.

George Washington

1
Introduction

The turn of the new millennium saw the completion of the human genome characteriza-
tion. One of the major challenges of the next century is to map the human connectome—a
map of the intricate complexity of the white matter circuitry comprising the human brain.
This would be a central achievement to understand and study noninvasively the healthy
white matter, but will also open new doors to characterize neurodegenerative diseases such
as Alzheimer or Parkinson. In order to do so, diffusion weighted magnetic resonance imag-
ing (MRI) is one of the powerful, noninvasive tools at our disposal. However, diffusion
MRI only offers an indirect way to probe the white matter microstructure at the macro-
scopic scale, but allows one to infer on the microscopic scale of the white matter. This
is done by carefully influencing the random displacement of water molecules (the Brown-
ian motion) in an experimentally controlled way using magnetic fields. The displacement
of these molecules can then be used to infer information about the microstructure they
encountered during this controlled displacement. As diffusion MRI is only a coarse and
indirect view of the microstructure, it can be prone to overinterpretation of its findings—
designing diffusion MRI experiments, processing the collected data, analyzing the results
and understanding their limitations is not always straightforward. The chapters contained
in this thesis present some recent advances in diffusion MRI to enhance data analysis and
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Chapter 1. Introduction

subsequent studies of the human brain.

1.1 Magnetic resonance imaging

The everyday clinical MRI acquisition relies on T1-weighted (T1w) imaging (Brant-Zawadzki
et al., 1992), where the white matter will typically be white, the gray matter gray and the
cerebrospinal fluid (CSF) black as shown by Fig. 1.1. T1w images are a quick way to get
an overview of the brain—the sequence is relatively fast to acquire (around 5 minutes on a
clinical scanner), is easy to understand and provides a high spatial resolution of around 1
mm isotropic. However, understanding the underlying cause-to-effect phenomena affect-
ing the contrast may be less straightforward as multiple competing processes can cause a
change in the T1 relaxation time and therefore a different contrast.

White matter Gray matter

CSF

Figure 1.1: A structural T1w image showing the white matter (in white), the gray matter (in gray)
and the CSF (in black). It is not possible to distinguish the organization of the underlying white
matter on a T1w image, but this is possible using diffusion MRI. The figure is adapted from St-Jean
(2015).

On the other hand, diffusion MRI can yield quantitative information about both the
rate of diffusivity and direction of displacement of water molecules (Le Bihan et al., 1986;
Le Bihan, 2014). These two complementary measures are affected by pathology through a
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1.1. Magnetic resonance imaging

different mechanism than T1 relaxation, which makes it possible to disentangle the cause
in some specific cases. One of the earliest applications was in stroke imaging, where the
apparent diffusion coefficient (ADC) is lower and the diffusion weighted image is hyper-
intense in the affected region, which may be difficult to identify (or even invisible) in a
classical T1w image (Baird and Warach, 1998). This difference in the diffusion weighted
images can even be identified minutes after the incident (Birenbaum et al., 2011) as shown
in Fig. 1.2.

A) B) C)

Figure 1.2: Example of a brain region affected by stroke 4 hours after the incident. In A), the T2w
image does not show any change in contrast while there is a higher signal in the affected region on
the diffusion weighted image in B). This is seen as a lower mean diffusivity in the ADC map as shown
by the darkened region in C). The figure is adapted from Shen et al. (2011), available under the CC
BY 2.0 license.

While diffusion MRI can provide information about the tissue microstructure through
the change in contrast alone, it is also additionally possible to infer the directional infor-
mation about these changes. Under an oriented magnetic field, such as used in an MRI
scanner with a diffusion sensitizing gradient, the water molecules tend to diffuse parallel to
the white matter fibers rather than perpendicularly. This can be used to infer the under-
lying structure and organization of the brain by changing the orientation of the diffusion
gradient and taking multiple images subject to various orientations. The same idea can
even be applied to other tissues of interest, either in vivo or ex vivo. Fig. 1.3 shows a
schematic of a single neuron and a sagittal cut of an ex vivo brain, for which the white
matter pathways can be reconstructed in vivo and noninvasively using diffusion MRI, a
process known as tractography (Basser, Pajevic, et al., 2000; Mori and Van Zijl, 2002). An
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Chapter 1. Introduction

example of a whole brain reconstruction using tractography and with a virtual dissection
of some common fiber pathways are shown in Fig. 1.4.

Figure 1.3: Left: Histological cut in a sagittal view of the brain. Diffusion MRI enables noninvasive
imaging of the white matter. Photograph courtesy of Maxime Chamberland. Right: Schematic
representation of a neuron. The axon is enveloped by a myelin sheath, which constitutes the white
matter in the brain. Image taken from Wikipedia.

Figure 1.4: Left: Tractography of the white matter reconstructed using diffusion MRI. This is an in
vivo reconstruction, allowing to visualize the major pathways and white matter structures of the brain.
Image courtesy of Maxime Chamberland. Right: Virtual anatomical dissection for some of the white
matter pathways as obtained from whole brain tractography. The figure is adapted from Thiebaut de
Schotten et al. (2015), available under the CC BY 4.0 license.

1.2 Diffusion MRI: a brief introduction to theory and concepts

As we have mentioned previously, one advantage of diffusion MRI is its ability to infer the
directional organization of the imaged tissue. For a given diffusion weighting, different

4



1.2. Diffusion MRI: a brief introduction to theory and concepts

orientation of the diffusion sensitizing gradients will give different contrasts as shown in
Fig. 1.5. This difference of angular contrast is one of the key experimental conditions which
is used to infer properties of the tissue. The other factor available is the amount of diffusion
weighting applied, usually referred to as the b-value. For a given angular orientation, an
increase in diffusion weighting generally translates to a lower measured signal as shown in
Fig. 1.6.

X

(a) Induced gradient field in X

Y

(b) Induced gradient field in Y

Z

(c) Induced gradient field in Z

Figure 1.5: The signal measured in diffusion MRI is orientation-dependent. When the structure
is aligned with the applied gradient, the signal loss is accentuated due to the preference of water
molecules to go parallel to the structure, rather than perpendicularly. As the CSF is an isotropic
medium with a high diffusivity value, the signal loss is equal in all directions and generally speaking
the region of highest diffusion in the healthy human brain. The figure is adapted from St-Jean (2015).

b-value

(a) b = 0 s/mm2 (b) b = 1000 s/mm2 (c) b = 2000 s/mm2 (d) b = 3000 s/mm2

Figure 1.6: Example of increasing diffusion weighting using datasets from the human connectome
project (HCP). For a fixed orientation of the diffusion gradient, an increase in b-value translates
to a lower measured signal due to longer diffusion time. The behavior of this signal loss is at the
foundation of diffusion MRI and is used to infer indirectly the white matter architecture. The figure
is adapted from St-Jean (2015).
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Chapter 1. Introduction

To summarize the information from multiple diffusion weighted images, various math-
ematical models offer a compact representation of the diffusion process, allowing the ex-
traction of scalar values to simplify interpretation and visualization of the diffusion features.
The most well-known signal representation is the diffusion tensor imaging (DTI) model
(Basser, Mattiello, et al., 1994; Basser and Pierpaoli, 1996), which is valid in the case of
free diffusion or in the presence of a single, coherently oriented fiber population. In DTI,
the diffusion equation is written as a 3D symmetric ellipsoid, whose largest eigenvalue and
eigenvector indicate the main axis of diffusion as shown by Eq. (1.1).

𝑆(𝑏, g) = 𝑆0e−𝑏g𝑇Dg, (1.1)

where D is the diffusion tensor, 𝑏 the b-value and g the diffusion sensitizing gradient ori-
entation. Solving the equations for D requires at least six diffusion weighted images as the
diffusion process is usually assumed to be symmetric as shown by Eq. (1.2), but collecting
additional measurements is generally encouraged to obtain a stable solution (Jones et al.,
2013; Tournier, Mori, et al., 2011).

D =
⎛⎜⎜⎜⎜
⎝

𝐷𝑥𝑥 − −
𝐷𝑥𝑦 𝐷𝑦𝑦 −
𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

⎞⎟⎟⎟⎟
⎠

(1.2)

Once the diffusion tensor is known, scalar metrics such as the ADC (which is the mean
of the eigenvalues) and the fractional anisotropy (FA), a normalized measure of dispersion
obtained by the ratio of the standard deviation over the mean of the eigenvalues, can be
computed from D. These measures can be useful to visually identify abnormal diffusion as
shown by Fig. 1.7.

However, DTI is inadequate for long diffusion times where the water molecules may
hit cell boundaries and become subject to different regimes of diffusion such as hindered
and restricted diffusion as shown in Fig. 1.8. DTI is also unable to resolve the presence of
crossing fibers, which are prevalent throughout the human brain (Jeurissen, Leemans, et
al., 2013). Advanced models of diffusion, such as diffusion kurtosis imaging (DKI) (Jensen
and Helpern, 2010; Jensen, Helpern, et al., 2005) or spherical deconvolution techniques
(Dell’Acqua et al., 2007; Descoteaux, Deriche, et al., 2009; Jeurissen, Tournier, et al.,
2014; Tournier, Calamante, et al., 2007) amongst others, are valid for longer diffusion
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1.2. Diffusion MRI: a brief introduction to theory and concepts

A) B) C) D)

Figure 1.7: A tumor in a A) T1w image and a B) diffusion weighted image. While the tumor can
be seen in the T1w image, the affected microstructure, presence of edema and displacement of the
normal white matter is easily seen in the diffusion derived C) FA map and D) direction color coded
FA map. The figure is adapted from St-Jean (2015).

times or in the presence of crossing fiber geometries respectively. This comes at the cost
of increased mathematical complexity and longer acquisition protocols than classical DTI,
but offer complementary information to DTI. As the diffusion MRI literature itself is quite
vast, the reader who would like to broaden his knowledge can find several reviews for each
major topic in diffusion MRI, such as artifacts correction (Tournier, Mori, et al., 2011),
diffusion modeling (Descoteaux and Poupon, 2014) or tractography (Jeurissen, Descoteaux,
et al., 2017) to name but a few. Recent reviews and special issues to the multiple topics in
diffusion MRI include for example Leemans (2019) and Tournier (2019) while books are
also dedicated to the subject such as Johansen-Berg and Behrens (2009) and Jones (2011).

Since diffusion MRI can be used to provide directional information not available to
conventional T1w imaging, one can wonder what might be its limitations besides longer
scan times. Unfortunately, the classical version of diffusion MRI uses a spin-echo sequence
(Stejskal and Tanner, 1965) and is based on T2 relaxation effects and relatively long echo
times. This means that in clinical practice the resolution, shorter scan time and signal-
to-noise ratio (SNR) that can be achieved is severely limited by the hardware available. A
T1w image can be acquired in approximately 5 minutes at a spatial resolution of 1 mm
isotropic while an equivalent diffusion MRI acquisition would be at a spatial resolution
of 2 mm isotropic with 30 DWIs, which includes the use of parallel imaging acceleration
(Griswold et al., 2002; Pruessmann et al., 1999) and echo planar imaging (EPI) (Mansfield,
1977; Rzedzian et al., 1983). In the research world, this is not so much an issue as several
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Chapter 1. Introduction

Figure 1.8: Macroscopic and microscopic views of water diffusion. Given sufficient time, the water
molecules hit the cell membranes, which may reduce their rate of diffusion (hindered diffusion, in blue)
or may even be trapped inside the cell (restricted diffusion, in green) as opposed to free diffusion
happening outside of the cellular environment. These different regimes of diffusion results in different
contrasts as observed on the diffusion weighted images, provided the acquisition protocol allows
sufficient diffusion time to explore these effects. Image adapted from Le Bihan (2014), available
under the CC BY 4.0 license.

techniques have been designed to minimize scanning time (Lustig et al., 2007; Ning et al.,
2016; Paquette et al., 2015; Scherrer et al., 2011) and may be available as off-the-shelves
sequences or upon request from the authors. However, the decrease in SNR associated
with a higher spatial resolution is oftentimes unavoidable.

An analogy to explain why this effect is hard to counterbalance can be to think of a 1
meter squared sandbox filled with a fixed amount of sand. Say that we divide this sandbox
by using a grid of 100 boxes of size 10 cm by 10 cm. Now, if we were to subdivide it
again by another factor 10, there would be 10 000 boxes of size 1 cm by 1 cm. Each box
would contain fewer grains of sand than if we only used 100 boxes of size 10 cm by 10 cm,
even though the total number of sand in the whole sandbox is always the same no matter
the subdivision. The same idea applies when we use smaller voxels in diffusion MRI; the
number of water molecules present in each voxel contributing to the signal is less than if
coarser voxels, which would each contain more water molecules, would be instead imaged.
As more slices also need to be acquired for an equivalent coverage, this also lengthens the
acquisition time due to an increase in echo time (TE) and repetition time (TR). Fig. 1.9
shows the reduced signal in a DWI if only the voxel size is increased at each subsequent step.
This tradeoff between SNR, spatial resolution and acquisition time is a careful balance that
needs to be optimized for every diffusion experiment.
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1.3. Outline of this thesis

Size of a voxel

(a) 1 mm (b) 1.25 mm (c) 1.5 mm (d) 1.9 mm

Figure 1.9: Datasets of the same subject at various spatial resolutions for a fixed b-value. At the
top, a set of b = 0 s/mm2 images and at the bottom a diffusion weighting of b = 1000 s/mm2. As
the voxel resolution increases, the images contain less water molecules per volume and therefore less
signal is measured. This increase in spatial resolution is at the cost of a lower SNR and increased
scan time relative to their coarser counterpart, limiting the achievable resolution in vivo. The figure
is adapted from St-Jean (2015).

1.3 Outline of this thesis

As we have seen so far, diffusion MRI can help to identify (and even quantify) abnormalities
in the white matter by providing contrasts not available from classical MRI. This is however
subject to limitations in terms of both acquisition time and SNR, which depends on the
scanner and gradient hardware available. Fortunately, theory and methods taking root in
image and signal processing, statistics and machine learning can be employed to enhance
and facilitate the analysis of diffusion MRI datasets as will be showcased in this thesis.

As shown in Fig. 1.9, the increase in spatial resolution in diffusion MRI comes at the
cost of a progressively lower SNR. The Non Local Spatial and Angular Matching (NL-
SAM) algorithm for denoising diffusion MRI is presented in Chapter 2, which makes use
of dictionary learning to iteratively construct an adaptive basis to represent the data at hand.
Important features of the signal across diffusion weighted images are automatically identi-
fied and used for an efficient reconstruction, discarding artifacts associated with lower SNR
datasets in the process. Synthetic simulations and comparisons with three other algorithms
show that the method improves the estimation of diffusion metrics when compared to the
original, unprocessed data. Experiments on a 1.2 mm isotropic dataset show qualitative
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Chapter 1. Introduction

improvements in restoring coherence in crossing fiber configurations and subsequent re-
construction of fiber bundles, showing more anatomical details than a comparative 1.8 mm
isotropic dataset of the same subject for matched acquisition times.

Chapters 3 and 4 go hand in hand, allowing quantitative analysis based on tractography
as presented in the previous chapter. Since tractography is a virtual reconstruction of fiber
bundles, it is possible to study the change in diffusion metrics along those fiber pathways.
This provides an alternative analysis method to the classical region of interest and voxelwise
analysis popular in structural MRI by projecting metrics along-tract in a new 1D space
following the 3D fiber bundles. Chapter 3 first shows an optimal assignment strategy to
create this 1D representation of the metric of interest. As tractography is different for every
subject due to anatomical variations, this results in potential differences in reconstructed
pathways. Delineation of those pathways therefore results in slightly different bundles of
various length for each subject across spatial coordinates. The projection from a 3D space
to this new 1D space is not necessarily straightforward since matching points in 3D do
not always correspond to the same anatomical locations across subjects depending on the
assignment strategy that is used.

Chapter 4 then expands upon Chapter 3 and presents the Diffusion Profile Realign-
ment (DPR) algorithm, which is designed to realign the extracted 1D profiles just before
statistical analysis. Using the Fourier transform, the 1D coordinates are realigned toward
a common template subject that is automatically chosen from the set of subjects currently
analyzed. Only the 1D segments that are sufficiently overlapping are kept and realigned
altogether, ensuring that the pointwise coordinates are in fact matching across all spatial
locations of every subject before analysis. This is demonstrated on synthetic experiments
and on in vivo data, where the coefficient of variation is lower after realignment for the stud-
ied diffusion metrics. Using 100 in vivo subjects, additional experiments are performed by
locally altering the shapes of the 1D profiles. After realignment, the affected regions are
easier to identify than before applying the realignment algorithm while preserving the effect
of interest.

Chapter 5 takes us back to the acquisition of diffusion datasets by proposing an auto-
mated method to estimate noise distributions in diffusion MRI, but without requiring a
priori knowledge of the acquisition process itself. As the statistical distribution of the signal
in MRI depends on the reconstruction algorithm and the type of parallel acceleration used
for the acquisition, an automated method that can identify these characteristics without
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1.4. Software implementations and datasets

user interaction may help to inform subsequent steps of the processing pipeline requiring
such information. Using a transformation to a gamma distribution, voxels are automatically
identified as belonging to the noise distribution or rejected as containing tissues or artifacts
using equations based on the moments and maximum likelihood equations of the gamma
distribution. The proposed algorithms are compared against three other methods using
numerical simulations on phantoms, simulations with parallel acceleration and acquired
datasets of a water bottle. Two in vivo datasets from different hardware manufacturers are
also analyzed in addition to a bias correction and a denoising task. As the signal measured
in MRI dictates the extracted scalar values from diffusion MRI modeling, different sta-
tistical properties could be mistakenly interpreted as genuine biological differences if not
taken into account during analysis. This is even more important for multicenter studies
that pool data from various acquisition protocols and hardware manufacturers as datasets
exhibit small signal variations even between scans of the same subject.

Chapter 6 follows on these previous ideas by proposing a new method to harmonize
diffusion datasets acquired on different scanners. Based once again on dictionary learning
just like Chapter 2, the datasets from three different scanners are harmonized either towards
a common space or from one scanner to the other in a fully automated manner. This can
even be done if the datasets are acquired at different spatial or angular resolutions through
subsampling and matching of the learned dictionaries, which do not require matched pairs
of samples for the training phase. Experiments on simulated alteration of the datasets show
that the algorithm preserves the induced effects while reducing variability between scanners
on the studied diffusion MRI metrics.

Finally, Chapter 7 summarizes the results presented throughout this thesis and presents
new promising directions for diffusion MRI which could be combined with the ideas in
this thesis.

1.4 Software implementations and datasets

The development of this thesis also lead to new algorithms, their implementation and to
the acquisition of diffusion MRI datasets to support the experiments and results presented.
To make the algorithms useful to the community in general, implementations are made
available with examples and easy to use installation instructions and accompanying docu-
mentation. Moreover, most of the datasets specifically acquired for the work presented in
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Chapter 1. Introduction

these chapters are made freely available so they may be of use to researchers doing similar
experiments, expand upon the presented methods or compare fairly their algorithms with
the same datasets that we used previously. The implementation of the NLSAM algorithm
from Chapter 2 is available online at https://github.com/samuelstjean/nlsam and the datasets
used in the manuscript are also available at https://github.com/samuelstjean/nlsam_data.
The diffusion profile realignment algorithm from Chapter 4 is available online at https:

//github.com/samuelstjean/dpr. An archival copy of each version of the code is also available
on Zenodo (St-Jean, 2019) and the synthetic datasets and extracted metrics for the in vivo
datasets are also available on Zenodo (St-Jean, Chamberland, et al., 2018). The algorithm
for automatically estimating the noise distribution from Chapter 5, which is an improved
version of the implementation previously described in St-Jean, De Luca, Viergever, et al.
(2018), can be obtained at https://github.com/samuelstjean/autodmri. An online archived
version is also available on Zenodo (St-Jean, De Luca, Tax, et al., 2019) along with the
synthetic datasets and the phantom datasets acquired for the experiments (St-Jean, De
Luca, Tax, et al., 2018). Finally, the harmonization algorithm presented in Chapter 6 is
available online at https://github.com/samuelstjean/harmonization. The usual archived copy
on Zenodo is also available (St-Jean, Viergever, et al., 2019).
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Chapter 2. Non Local Spatial and Angular Matching

Abstract

Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-
Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values
contains relevant information and is now of great interest for microstructural
and connectomics studies. High noise levels bias the measurements due to the
non-Gaussian nature of the noise, which in turn can lead to a false and biased
estimation of the diffusion parameters. Additionally, the usage of in-plane ac-
celeration techniques during the acquisition leads to a spatially varying noise
distribution, which depends on the parallel acceleration method implemented
on the scanner. This paper proposes a novel diffusion MRI denoising technique
that can be used on all existing data, without adding to the scanning time. We
first apply a statistical framework to convert both stationary and non stationary
Rician and non central Chi distributed noise to Gaussian distributed noise, ef-
fectively removing the bias. We then introduce a spatially and angular adaptive
denoising technique, the Non Local Spatial and Angular Matching (NLSAM)
algorithm. Each volume is first decomposed in small 4D overlapping patches,
thus capturing the spatial and angular structure of the diffusion data, and a dic-
tionary of atoms is learned on those patches. A local sparse decomposition is
then found by bounding the reconstruction error with the local noise variance.
We compare against three other state-of-the-art denoising methods and show
quantitative local and connectivity results on a synthetic phantom and on an in
vivo high resolution dataset. Overall, our method restores perceptual informa-
tion, removes the noise bias in common diffusion metrics, restores the extracted
peaks coherence and improves reproducibility of tractography on the synthetic
dataset. On the 1.2 mm high resolution in vivo dataset, our denoising improves
the visual quality of the data and reduces the number of spurious tracts when
compared to the noisy acquisition. Our work paves the way for higher spatial
resolution acquisition of diffusion MRI datasets, which could in turn reveal new
anatomical details that are not discernible at the spatial resolution currently used
by the diffusion MRI community.

Keywords: Diffusion MRI, Denoising, Block Matching, Noise bias, Dictionary learning
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2.1. Introduction

2.1 Introduction

Diffusion magnetic resonance imaging (MRI) is an imaging technique that allows probing
microstructural features of the white matter architecture of the brain. Due to the imaging
sequence used, the acquired images have an inherently low signal-to-noise ratio (SNR),
especially at high b-values. Acquiring data at high b-values contains relevant information
and is now of great interest for connectomics (Van Essen et al., 2013) and microstructure
(Alexander et al., 2010) studies. High noise levels bias the measurements because of the
non-Gaussian nature of the noise, which in turn prohibits high resolution acquisition
if no further processing is done. This can also lead to a false and biased estimation of
the diffusion parameters, which impacts on the scalar metrics (e.g. fractional anisotropy
(FA)), or in the fitting of various diffusion models (e.g. diffusion tensor imaging (DTI)
and high angular resolution diffusion imaging (HARDI) models). This can further impact
subsequent tractography and connectivity analysis if the spatially variable noise bias is not
taken into account. Therefore, high SNR diffusion weighted images (DWIs) are crucial to
draw meaningful conclusions in subsequent data or group analyses (Jones et al., 2013).

This paper focuses on denoising techniques since they can be used on all existing data,
without adding to the scanning time. They also can be readily applied to any already
acquired dataset just like motion and eddy current corrections that are commonly applied
on acquired datasets. One possible way to acquire higher quality data is to use better
hardware, but this is costly and not realistic in a clinical setting. One can also use a bigger
voxel size to keep the relative SNR at the same level, but at the expense of a lower spatial
resolution or acquiring fewer directions to keep an acceptable acquisition time (Descoteaux
and Poupon, 2014). Averaging multiple acquisitions also increases the SNR, but this should
be done either using Gaussian distributed noisy data (Eichner et al., 2015) or in the complex
domain to avoid the increased noise bias (Jones et al., 2013).

With the advance of parallel imaging and acceleration techniques such as the gener-
alized autocalibrating partially parallel acquisitions (GRAPPA) or the sensitivity encoding
for fast MRI (SENSE), taking into account the modified noise distribution is the next step
(Aja-Fernández et al., 2014; Dietrich et al., 2008). The noise is usually modeled with a
Rician distribution when SENSE is used and a non central Chi (nc-𝜒) distribution with
2N degrees of freedom (with N the number of receiver coils) when a Sum of Squares (SoS)
reconstruction is used. If GRAPPA acceleration is also used with a SoS reconstruction, the
degrees of freedom of the nc-𝜒 distribution will vary between 1 and 2N (Aja-Fernández et
al., 2014). Some techniques have been specifically adapted by the medical imaging commu-
nity to take into account the Rician nature of the noise such as non local means algorithms
(Coupe et al., 2008; Manjón, Coupé, Martí-Bonmatí, et al., 2010; Tristán-Vega and Aja-
Fernández, 2010), Linear Minimum Mean Square Error estimator (Aja-Fernandez et al.,
2008; Brion et al., 2013), generalized total variation (Liu et al., 2014), a majorize-minimize
framework with total variation denoising (Varadarajan and Haldar, 2015), maximum likeli-
hood (Rajan et al., 2012) or block matching (Maggioni et al., 2013). Some methods (Bao
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et al., 2013; Becker et al., 2014; Brion et al., 2013; Gramfort et al., 2014; Lam et al.,
2014; Manjón, Coupé, Concha, et al., 2013; St-Jean et al., 2014; Tristán-Vega and Aja-
Fernández, 2010) have also been specifically designed to take advantage of the properties of
the diffusion MRI signal such as symmetry, positivity or angular redundancy. Since the
data acquired in diffusion MRI depicts the same structural information, but under different
sensitizing gradients and noise realization, these ideas take advantage of the information
contained in the multiple acquired diffusion MRI datasets.

We thus propose to exploit the structural redundancy across DWIs through a common
sparse representation using dictionary learning and sparse coding to reduce the noise level
and achieve a higher SNR. Our method can be thought of a Non Local Spatial and Angular
Matching (NLSAM) with dictionary learning. To the best of our knowledge, most recent
state-of-the-art denoising algorithms either concentrate on modeling the nc-𝜒 noise bias or
the spatially varying nature of the noise in a Rician setting. Our method thus fills the gap by
being robust to both of these aspects at the same time, as seen in Table 2.1. We will compare
our method against one structural MRI method and two other publicly available algorithms:
the Adaptive Optimized Non Local Means (AONLM) (Manjón, Coupé, Martí-Bonmatí,
et al., 2010), which is designed for 3D structural MRI, the Local Principal Component
Analysis (LPCA) (Manjón, Coupé, Concha, et al., 2013) and the multi-shell Position-
Orientation Adaptive Smoothing (msPOAS) algorithm (Becker et al., 2014), both designed
for processing diffusion MRI datasets. More information on each method features and
parameters will be detailed later.

Noise type AONLM LPCA msPOAS NLSAM

Stationary Rician
nc-𝜒 X X

Variable Rician X
nc-𝜒 X X X

Use 4D angular information X

Table 2.1: Features of the compared denoising algorithm, see Section 2.3.3 for an in-depth review
of each method. The NLSAM algorithm is the only technique robust to both the spatially varying
nature of the noise and the nc-𝜒 bias at the same time.

The contributions of our work are:

i) Developing a novel denoising technique specifically tailored for diffusion MRI, which
takes into account spatially varying Rician and nc-𝜒 noise.

ii) Quantitatively comparing all methods on common diffusion MRI metrics.
iii) Quantifying the impact of denoising on local reconstruction models.
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iv) Analyzing the impact of denoising on tractography with a synthetic phantom and a
high spatial resolution dataset.

2.2 Theory

We now define two important terms used throughout the present work. Firstly, a patch
is defined as a 3D region of neighboring spatial voxels, i.e. a small local region of a single
3D DWI. Secondly, a block is defined as a collection of patches taken at the same spatial
position, but in different DWIs, i.e. a block is a 4D stack of patches that are similar in the
angular domain. The reader is referred to Fig. 2.1 for a visual representation of the process.

(a) A block is made of the b0 and some angular neighbors
(b) Angular neighbors
position on the sphere.

Figure 2.1: a) A 3D block is made by stacking along the 4th dimension the b0, a DWI and its
angular neighbors, which share similar structure, but under a slightly different noise realization. b)
Disposition of equidistant angular neighbors on the sphere.

The Block Matching Algorithm Reusing the key ideas from the non local means, the
block matching algorithm (Dabov et al., 2007) further exploits image self-similarity. Sim-
ilar 2D patches found inside a local neighborhood are stacked into a 3D transform domain
and jointly filtered via wavelet hard-thresholding and Wiener filtering. Combining these
filtered estimates using a weighted average based on their sparsity leads to superior denois-
ing performance than the non local means filter. The idea has been extended in 3D for
MRI image denoising in (Maggioni et al., 2013) and an adaptive patch size version for
cardiac diffusion MRI image denoising was successfully employed by (Bao et al., 2013).

The Dictionary Learning Algorithm Dictionary learning has been used in the machine
learning community to find data driven sparse representations (Elad and Aharon, 2006;
Mairal et al., 2009). Typically, a set of atoms (called the dictionary) is learned over the
data, providing a way to represent it with a basis tailored to the signal at hand (Olshausen
and Field, 1996). This is analogous to using an off-the-shelf basis like the discrete cosine
transform or wavelets, but in a data-driven manner, which gives better results than using
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a fixed, general-purpose basis since it can also be overcomplete, i.e. it can have more atoms
than coefficients. Given a set of input data 𝐗 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑚×𝑛 organized as column
vectors, the process is expressed as

min
𝐃,𝜶

1
𝑛

𝑛
∑
𝑖=1

(1
2 ∥𝑥𝑖 − 𝐃𝛼𝑖∥

2
2 + 𝜆 ∥𝛼𝑖∥1) s.t. ‖𝐃‖2

2 = 1, (2.1)

where 𝐃 ∈ ℝ𝑚×𝑝 is the learned dictionary, 𝜆 is a trade-off parameter between the data
fidelity term and the penalization on the coefficients 𝜶 = [𝛼1, … , 𝛼𝑛] ∈ ℝ𝑝×𝑛. A higher
value of 𝜆 promotes sparsity at the expense of the similarity with the original data. The
columns of 𝐃 are also constrained to be of unit ℓ2 norm in order to avoid degenerated
solutions (Elad and Aharon, 2006; Gramfort et al., 2014; Mairal et al., 2009). The key is to
devise a sparse representation to reconstruct structural information and discard noise, since
the latter does not typically allow a sparse representation in any basis. Using a penalization
on the ℓ1 norm of the coefficients promotes sparsity, hence providing denoising through
the regularized reconstruction. This idea has led to inpainting and denoising applications
from the machine learning community (Elad and Aharon, 2006; Mairal et al., 2009) or even
to accelerated acquisition process in the diffusion MRI community for diffusion spectrum
imaging (DSI) (Gramfort et al., 2014).

Adjusting for various noise types Although the original formulations of Eqs. (2.1) and (2.4)
assume stationary, white additive Gaussian noise, this is usually not true in diffusion MRI
data, especially at high b-values and low SNR. The noise is usually modeled as following a
Rician distribution or a nc-𝜒 distribution when used with parallel imaging depending on
the reconstruction algorithm and the number of coils N used during the acquisition (Aja-
Fernández et al., 2014; Dietrich et al., 2008). This introduces a bias, which depends on
the intensity of the signal that must be taken into account to recover the expected value of
the original signal as shown in Fig. 2.2. Note, though, that other common preprocessing
corrections, such as motion correction or eddy current correction, require interpolation
and could thus change the theoretical noise distribution (Veraart et al., 2013).

The key idea lies in the fact that the nc-𝜒 distribution is actually made from a sum of
Gaussians, from which the Rician distribution is a special case with N = 1. By making the
hypothesis that each of the 2N Gaussian distributions shares the same standard deviation
𝜎𝐺 (Koay, Özarslan, and Basser, 2009), one can map a value 𝑚 from a nc-𝜒 distribution
to a equivalent value �̂� from a Gaussian distribution. We first compute estimates for 𝜎𝐺
and 𝜂 (which is an estimate of the signal value in a Gaussian setting). If 𝜂 is below the
noise floor due to a low local SNR, that is when 𝜂 < 𝜎𝐺√𝜋/2, we set 𝜂 = 0 instead
of being negative as suggested by (Bai et al., 2014). The next step uses the cumulative
distribution function (cdf ) of a nc-𝜒 distribution and the inverse cumulative distribution
function (icdf ) of a Gaussian distribution to find the equivalent value �̂� between the two
distributions. This effectively maps a noisy nc-𝜒 distributed signal 𝑚 to a equivalent noisy

22



2.2. Theory

Figure 2.2: Top: a) A noisy acquisition with slowly varying nc-𝜒 noise and b) the resulting stabilized,
Gaussian distributed noisy DWI. c) A noisy acquisition with fast varying Rician noise where the
background was masked by the scanner with d) its stabilized counterpart. Bottom: Histogram of
the nc-𝜒 noise distribution in the selected background region of a) before stabilization and b) after
stabilization. Note the non-Gaussianity of the noise in a) versus b).

Gaussian distributed signal �̂�. See Fig. 2.3 for a synthetic example with a visual depiction
of the process for mapping nc-𝜒 signals to Gaussian distributed signals and (Koay, Özarslan,
and Basser, 2009) for the original in-depth details.

(a) pdf of nc-𝜒 distribution. (b) cdf of nc-𝜒 distribution. (c) icdf of Gaussian distribution.

Figure 2.3: A synthetic example of the stabilization algorithm. a) Given a noisy value 𝑚 = 678
observed in a nc-𝜒 distribution with 𝑁 = 4 and 𝜎𝐺 = 200, the underlying value is estimated as
𝜂 = 407. b) The associated probability in the nc-𝜒 cdf with 𝜂 is 𝛼 = 0.513, c) thus giving from the
inverse cdf of a Gaussian distribution with mean 𝜇 = 407 and standard deviation 𝜎𝐺 = 200 a new
noisy value �̂� = 413.

Using a variance stabilization means considering the noise as additive white Gaussian
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noise, which allows any already designed technique for Gaussian noise to be used without
any modification. The author of (Foi, 2011) has shown that techniques with a Rician noise
adaptation performed equally well as their Gaussian noise version through the use of a
noise stabilization approach. The same idea has been directly applied with block matching
(Dabov et al., 2007) for structural MRI in (Maggioni et al., 2013). The classical solution
to remove the noise bias is to include the noise model into the denoising algorithm itself,
as for example done in (Aja-Fernandez et al., 2008; Becker et al., 2014; Lam et al., 2014;
Manjón, Coupé, Martí-Bonmatí, et al., 2010). The drawback with this solution is that
each method has to be rethought to account for any other noise type not considered in its
original formulation.

2.3 Method

Adjusting for various noise types In this paper, we will deal with both the Rician and
nc-𝜒 noise model on a voxelwise basis through the noise stabilization technique of (Koay,
Özarslan, and Basser, 2009). This indeed makes our algorithm easily adaptable for any
noise type by simply changing the pre-applied transformation as needed. We will use
the Probabilistic Identification and Estimation of Noise (PIESNO) (Koay, Özarslan, and
Pierpaoli, 2009) to estimate the stationary noise standard deviation. PIESNO works on
a slice by slice basis and assumes the background noise as stationary along the selected
slice, and is designed to find the underlying standard deviation of the Gaussian noise given
its Rician or nc-𝜒 nature. Voxels that are considered as pure background noise are found
automatically by the method, using the fact that the squared mean of those voxels follows
a Gamma distribution. Once automatically identified, the standard deviation 𝜎𝐺 of those
voxels can be computed and a new estimation of the Gamma distribution is made with the
updated 𝜎𝐺 until convergence. In the case of spatially varying noise, we will use a method
similar to (Manjón, Coupé, Martí-Bonmatí, et al., 2010), where the noise is estimated
locally as

𝜎2
𝑖 = min ||𝑢𝑖 − 𝑢𝑗||22, ∀𝑖 ≠ 𝑗, (2.2)

with 𝑢𝑖 a noisy patch computed by subtracting a patch to a low-pass filtered version of
itself and applying the local Rician correction factor of (Koay and Basser, 2006). If the
background was masked automatically by the scanner or is unreliable due to the scanner
preprocessing for statistical estimation, we use a similar idea by computing the local stan-
dard deviation of the noise field as

𝜎𝑖 = std(𝑢𝑖 − low pass(𝑢𝑖)) (2.3)

If a noise map was acquired during the scanning session, it can be sampled directly to esti-
mate the parameters of the noise distribution. In the event that such a map is unavailable,
a synthetic one can be constructed by subtracting the image from its low-pass filtered coun-
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terpart (see Eq. (2.3)). Since the noise is assumed as independent and identically distributed
across DWIs, we apply a median filter on the 4D dataset to get a 3D noise field. Finally,
a Gaussian filter with a full-width at half maximum of 10 mm is applied to regularize the
noise field, which is then corrected for the more general nc-𝜒 bias with the correction
factor of (Koay and Basser, 2006). A similar approach based on extracting the noise field
with a principal component analysis was used by (Manjón, Coupé, Concha, et al., 2013).

Locally Adapting the Dictionary Learning To locally adapt the method to spatially vary-
ing noise, we add some more constraints to the classical formulation of Eq. (2.1). Firstly,
since the measured signal in diffusion MRI is always positive, we use this assumption to
constrain the positivity of the global dictionary 𝐃 and the coefficients 𝜶, i.e. 𝐃 ≥ 0, 𝜶 ≥ 0
as done in (Gramfort et al., 2014). We fixed the regularization parameter 𝜆 for Eq. (2.1)
in the same fashion as (Mairal et al., 2009), that is 𝜆 = 1.2/√𝑚, with 𝑚 = 𝑝𝑠3 × 𝑎𝑛, 𝑝𝑠
is the patch size and 𝑎𝑛 the number of angular neighbors. Secondly, once 𝐃 is known,
we use Eq. (2.4) (see the next paragraph) iteratively until convergence with the constraint
𝜶 ≥ 0 and 𝜆𝑖 = 𝜎2

𝑖 (𝑚 + 3
√

2𝑚), where 𝜎2
𝑖 is the local noise variance found either with

PIESNO or Eq. (2.3). In accordance with (Candès et al., 2008), 𝜆𝑖 is an upper bound on
the ℓ2 norm of the noise. We set the convergence as reached for 𝛼𝑖 at iteration 𝑗 when
max |𝛼𝑖,𝑗 − 𝛼𝑖,𝑗−1| < 10−5 or until a maximum of 40 iterations is realized.

Adaptive and Iterative ℓ1 Minimization While Eq. (2.1) will both construct the dictio-
nary 𝐃 and find the coefficients 𝜶, there are specialized iterative algorithms for solving
ℓ1 problems to yield sparser solutions (Candès et al., 2008; Daubechies et al., 2010). An
equivalent constrained formulation for solving each column 𝑖 of 𝜶 is

min
𝛼𝑖

∥𝑤𝑗𝛼𝑖∥1
s.t. 1

2 ∥𝑥𝑖 − 𝐃𝛼𝑖∥
2
2 ≤ 𝜆𝑖, (2.4)

where 𝑤𝑗 is a weighting vector penalizing the coefficients of 𝛼𝑖 at iteration 𝑗. Eq. (2.4) can
thus be iterated to further identify non zero coefficients in 𝛼𝑖 by setting 𝑤𝑗+1 = 1

|𝛼𝑖|+𝜖 for
the next iteration. The algorithm is then started with 𝑤0 = 1 and 𝜖 = max|𝐃𝑇 𝜉|. As
suggested by (Candès et al., 2008), 𝜉 ∼ 𝒩(0, 𝜎2) is set as a random Gaussian vector, which
gives a baseline where significant signal components might be recovered. While similar in
spirit to Eq. (2.1), Eq. (2.4) provides a way to find the sparser representation for 𝛼𝑖 while
bounding the ℓ2 reconstruction error.

To the best of our knowledge, our paper is also the first to use the noise variance as
an explicit bound on the ℓ2 reconstruction error. This yields a sparse representation while
controlling at the same time the fidelity with respect to the original data, while the classical
way is to use the variance as a regularized penalization factor.
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2.3.1 The proposed algorithm

Our new NLSAM algorithm combines ideas from block matching and sparse coding. We
will use the same kind of framework, but by replacing the thresholding part in the block
matching with a step of dictionary denoising instead, allowing the penalization on the
sparsity of the signal to regularize the noisy blocks. We also take explicit advantage of the
fact that diffusion MRI data is composed of multiples volumes of the same structure, albeit
with different noise realizations and contrasts across DWIs. This allows sparser estimates
to be found, further enhancing the separation of the data from the noise (Olshausen and
Field, 1996). Our method is thus composed of three steps:

1. Correct the noise bias if needed.

2. Find angular neighbors on the sphere for each DWI.

3. Apply iterative local dictionary denoising on each subset of neighbors.

Step 1. In case the noise is not Gaussian distributed, we first correct for the noise
bias by finding the Gaussian noise standard deviation with PIESNO (Koay, Özarslan, and
Pierpaoli, 2009). If the background is masked, we instead use Eq. (2.3). We then transform
the DWIs into Gaussian distributed, noisy signals using the correction scheme of (Koay,
Özarslan, and Basser, 2009).

Step 2. We find the angular neighbors for each of the DWIs. In this step, the local
angular information is encoded in a 4D block of similar angular data, as seen in Fig. 2.1.
The gradients are symmetrized to account for opposite polarity DWIs, which share similar
structure to their symmetrized counterpart. The search is also made along all the shell
at the same time, since structural information (such as sharp edges) is encoded along the
axial part of the data. This encodes the similar angular structure of the data along the 4th
dimension in a single vector.

Step 3. The dictionary D is constructed with Eq. (2.1) and the blocks are then denoised
with Eq. (2.4). This step can be thought of finding a linear combination with the smallest
number of atoms to represent a block. To adapt to spatially varying noise, each block is
penalized differently based on the local variance of the noise. This enables the regularization
to adapt to the amount of noise in the block, which is usually stronger as the acquired signal
is farther from the receiver coils. Since each overlapping block is extracted, each voxel is
represented many times and they are recombined using a weighted average based on their
sparsity as in (Maggioni et al., 2013; Manjón, Coupé, Concha, et al., 2013). For each voxel
𝑖 with intensity 𝑣𝑖 contained in multiple overlapping blocks 𝑉𝑗 in neighborhood 𝑉 , we set
the final value of 𝑣𝑖 as

𝑣𝑖 =
∑
𝑗∈𝑉

𝑣𝑗(1 + ||𝑉𝑗||0)

∑
𝑗∈𝑉

1 + ||𝑉𝑗||0
, (2.5)
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where 𝑉 is the same spatial position for voxel 𝑖 across multiple blocks 𝑉𝑗. This assumes
that more coefficients in block 𝑉𝑖 also mean more noise in the reconstruction. The ℓ0
norm thus penalizes reconstructions with more coefficients and assigns a lower weight in
that case for the overlapping weighted average.

This third step is then repeated for all the DWIs. Since each DWI will be processed
more than once with a different set of neighbors each time (see Fig. 2.1 for the block
formation process), we obtain multiple denoised volumes of exactly the same data, but
denoised in a different angular context. Once all the DWIs have been processed, we average
the multiple denoised versions obtained previously to further reduce any residual noise. See
Section 2.7 for an outline of the NLSAM algorithm as pseudocode. The result will be a
denoised version of the input, through both dictionary learning and spatial and angular
block matching.

2.3.2 Datasets and acquisition parameters

Synthetic phantom datasets The synthetic data simulations were based on the ISBI 2013
HARDI challenge phantom1 and were made with phantomas2. We used the given 64
gradients set from the challenge at b-values of b = 1000 s/mm2 and b = 3000 s/mm2. For
simplicity, we will now refer to these datasets as the b = 1000 s/mm2 and the b = 3000 s/mm2

datasets. The datasets were generated with Rician and nc-𝜒 noise profile, both stationary
and spatially varying, at two different signal-to-noise ratios (SNR) for each case. In total,
we thus have 8 different noise profiles for each b-value. The stationary noise was generated
with SNR 10 and 20 and the spatially varying noise was generated with SNR varying linearly
from 5 to 15 and from 7 to 20. The noise distributions were generated for each SNR by
setting 𝑁 = 1 for the Rician noise and 𝑁 = 12 for the nc-𝜒 noise. The noisy data was
generated according to

̂𝐼 =
√√√
⎷

𝑁
∑

𝑖=0,𝑗=0
( 𝐼√

𝑁 + 𝛽𝜖𝑖)
2

+ 𝛽𝜖2
𝑗 , where 𝜖𝑖, 𝜖𝑗 ∼ 𝒩(0, 𝜎2), (2.6)

where ̂𝐼 is the resulting noisy volume, 𝒩(0, 𝜎2) is a Gaussian distribution of mean 0 and
variance 𝜎2 with 𝜎 = mean (b0) / SNR and mean(b0) is the mean signal value of the b
= 0 s/mm2 image. 𝛽 is a mask to create the noise distribution set to 1 in the constant
noise case and as a sphere for the spatially varying noise case. For the spatially varying
noise experiments, 𝛽 has a value of 1 on the borders up to a value of 3 at the middle of
the mask, thus generating a stronger noise profile near the middle of the phantom than for
the stationary (constant) noise case. As shown on Fig. 2.4, this results in a variable SNR
ranging from approximately SNR 5 and SNR 7 in the middle of the phantom up to SNR

1http://hardi.epfl.ch/static/events/2013_ISBI/
2http://www.emmanuelcaruyer.com/phantomas.php
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Chapter 2. Non Local Spatial and Angular Matching

15 and SNR 20 for the spatially varying noise case. This noise mimics a homogeneous
noise reconstruction as implemented by some scanners while still having a spatially varying
noise map.
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Rician

(c) SNR10 stat
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(d) SNR15 var
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(e) SNR15 var
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Figure 2.4: Synthetic b = 1000 s/mm2 datasets with various noise profiles used in the experiments.
The top row shows the b0 image, the middle row shows the same DWI across noise types and the
bottom row shows the various noise distribution which generated the middle row. From left to right:
the noiseless data, SNR 10 with stationary Rician noise, SNR 10 with stationary nc-𝜒 noise, SNR 15
with spatially variable Rician noise, SNR 15 with spatially varying nc-𝜒 noise.

Real datasets To compare our NLSAM method on a real dataset, we acquired a full
brain in vivo dataset consisting of 40 DWIs at b = 1000 s/mm2 and one b = 0 s/mm2. The
acquisition spatial resolution was 1.2 × 1.2 × 1.2 mm3, TR/TE = 18.9 s / 104 ms, gradient
strength of 45 mT/m on a 3T Philips Ingenia scanner with a 32 channels head coil for a
total acquisition time of 13 minutes. An in-plane parallel imaging factor of R = 2 was used
with the SENSE reconstruction algorithm, thus giving a fast spatially varying Rician noise
distribution (hence, the denoising algorithms will be set with 𝑁 = 1) even if multiple coils
are used by the reconstruction algorithm for producing the final image (see Fig. 2.2). No
correction was applied to the dataset, as we wanted to show the effectiveness of denoising
without any other preprocessing step such as eddy current or motion correction, which
could introduce blurring caused by interpolation. To obtain a comparable clinical-like
baseline dataset and show the advantage of acquiring directly high resolution DWIs, we
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also obtained a 64 DWIs dataset at b = 1000 s/mm2 and one b = 0 s/mm2 of the same
subject. The spatial resolution was 1.8 × 1.8 × 1.8 mm3, TR/TE = 11.1 s / 63 ms, for
a total acquisition time of 12 mins. The acquisition was made on the same scanner, but
during another scanning session. No further processing nor denoising was done on this
dataset for the reasons mentioned above. This can be thought of having a higher angular
resolution at the cost of a lower spatial resolution for a comparable acquisition time.

2.3.3 Other denoising algorithms for comparison

We now present the various features and cases covered by the denoising algorithms studied
in this paper. The Adaptive Optimized Nonlocal Means (AONLM) method (Manjón,
Coupé, Martí-Bonmatí, et al., 2010) is designed for Rician noise removal in a 3D fashion
and works separately on each DWIs volume. It also includes a Rician bias removal step and
is able to spatially adapt to a varying noise profile automatically. We used the recommended
default parameter of a 3D patch size of 3 x 3 x 3 voxels with the Rician bias correction in
all cases. The Local Principal Component Analysis (LPCA) method (Manjón, Coupé,
Concha, et al., 2013) is also made to take into account the Rician noise bias and is spatially
adaptive, but also uses the information from all the DWIs in the denoising process. We
used the automatic threshold set by the method with the Rician noise correction for all
experiments. Both AONLM and LPCA can be downloaded from the author’s website3.
The multi-shell Position-Orientation Adaptive Smoothing (msPOAS) algorithm (Becker
et al., 2014) was designed for both Rician and nc-𝜒 noise, while also taking into account
the angular structure of the data for adaptive smoothing. We discussed with the authors
of msPOAS4 for their recommendations and using their suggestion, we set 𝑘⋆ = 12 and
𝜆 = 18. We also supplied the correct value for 𝑁 and used the implemented automatic
detection of the noise standard deviation from msPOAS. For the NLSAM algorithm, we
used a patchsize of 3 x 3 x 3 voxels with 4 angular neighbors, which correspond to the
number of angular neighbors at the same distance on the sphere for each selected DWI.
The value of 𝑁 was given to the algorithm and the number of atoms was set to two times
the number of voxels in a block for the dictionary learning part, which was repeated for
150 iterations. The other parameters were set as described in Section 2.3. As shown in
Table 2.1, our method is designed to work on both stationary and spatially variable Rician
and nc-𝜒 noise. The NLSAM algorithm is implemented in python and is freely available.5

Finally, we quantitatively assess the performance of each method by comparing them
against the noiseless synthetic data using

i) The peak signal-to-noise ratio (PSNR) in dB and the structural similarity index
(SSIM) on the raw data intensities (Wang et al., 2004).

3http://personales.upv.es/jmanjon/denoising/index.htm
4http://cran.r-project.org/web/packages/dti/index.html
5https://github.com/samuelstjean/nlsam
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ii) The dispersion of the FA error, computed from a weighted least-square diffusion
tensor model.

iii) The mean angular error (AE) in degrees and the discrete number of compartments
(DNC) error for a region of crossings (Daducci et al., 2014; Paquette et al., 2015).

iv) The Tractometer (Côté, Girard, et al., 2013) ranking platform on deterministic trac-
tography algorithms for the synthetic datasets. This platform computes global con-
nectivity metrics, giving an insight on the global coherence of the denoised datasets
in a tractography setting.

v) Tracking some known bundles on the high resolution in vivo dataset and qualitatively
comparing them to their lower spatial resolution counterpart.

2.3.4 Local models reconstruction and fiber tractography

The weighted least-square diffusion tensors were reconstructed using the default parame-
ters of Dipy (Garyfallidis et al., 2014) to compute the FA values. We used the Constrained
Spherical Deconvolution (CSD) (Tournier et al., 2007) with a spherical harmonics of order
8 to reconstruct the fODFs and extract the peaks subsequently used for the determinis-
tic tracking. To compute the fiber response function (frf ), we used all the voxels in the
white matter that had an FA superior to 0.7. If less than 300 voxels meeting this crite-
rion were found, the FA threshold was lowered by 0.05 until the criterion was met. See
Sections 2.4.2 and 2.5.3 for more information about the bias introduced in the FA. For
the synthetic datasets, the tracking was done inside the white matter mask and the seed-
ing was done from the bundles extremities to mimic seeding from the white-gray matter
interface (Girard et al., 2014). We used 100 seeds per voxels to allow sufficient bundle
coverage, a stepsize of 0.2 mm and a maximum angle deviation of 60 degrees. The other
parameters used were the defaults supplied by the tractometer pipeline (Côté, Girard, et al.,
2013). The in vivo datasets deterministic tracking was made with the technique of (Girard
et al., 2014) by seeding from the white matter and gray matter interface with the particle
filtering and generating approximately 1 million of streamlines. White matter masks were
created by segmenting a T1-weighted image with FSL FAST6 from the same subject and
then registered with ANTs7 to each in vivo dataset. The bundles were finally automatically
segmented using the White Matter Query Language (WMQL) (Wassermann et al., 2016)
Tract Querier tool with regions obtained from a T1-weighted white matter and gray matter
parcellation. This atlas-based automatic dissection method extracts fiber bundles automat-
ically using anatomical definitions in a reproducible manner for all methods, as opposed

6http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
7http://picsl.upenn.edu/software/ants/
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to the traditional way of manually defining including and excluding ROIs to define bun-
dles. Visualization of fODFs, peaks and tractography was made using the fibernavigator8

(Chamberland et al., 2014).

2.4 Results

2.4.1 Preserving the raw DWI data

Fig. 2.5 shows the b = 1000 s/mm2 noiseless data, the noisy input data at SNR 10 for nc-𝜒
stationary noise and the results of the denoising on the synthetic phantom for all com-
pared methods. This is the noise case theoretically covered by msPOAS and our NLSAM
algorithm. We also show two zoomed regions of crossings with the reconstructed peaks
extracted from fODFs. All perceptual and FA metrics were computed on the slice shown
while angular metrics were computed in the zoomed region depicted by the yellow box.
Note how the small blue bundle and its crossings are preserved on the NLSAM denoised
dataset, while other denoising methods tend to introduce blurring.

Fig. 2.6 shows the noisy high resolution in vivo dataset, the denoised version obtained
for each algorithm and the low spatial resolution acquisition of the same subject without
any denoising. Since our scanner uses a 32 channels head-coil but implements the SENSE
reconstruction algorithm, the resulting spatially varying Rician noise distribution is the
case covered by AONLM, LPCA and our NLSAM algorithm. We show a coronal slice
for the gradient direction closest to (0, 1, 0), the colored FA map and a zoom on two
regions of crossings. The yellow region shows the junction of the corticospinal tract (CST)
and superior longitudinal fasciculus (SLF) while the white region shows the junction of
the corpus callosum (CC) and the CST. While the high resolution dataset is noisier than
its lower resolution counterpart is, the highlighted crossings regions are well recovered by
the denoising algorithms and thus offer an improvement in anatomical details over the
lower spatial resolution dataset. We also see in the yellow box that the NLSAM denoised
dataset recovers crossings extending from the CC which are almost absent in the compared
datasets.

Fig. 2.7 shows the PSNR and SSIM for the SNR 10 (stationary noise) and SNR 15
(spatially varying noise) synthetic datasets. The LPCA algorithm performs best in term of
PSNR on the Rician noise case, but attains a lower score for nc-𝜒 noisy datasets. The same
trend is seen for AONLM and msPOAS algorithms, where the SNR 15 nc-𝜒 case is the
hardest test case. In contrast, our NLSAM technique is above 30 dB for the PSNR and 0.9
for the SSIM in most cases, with a relatively stable performance amongst the majority of
tested cases. We also note that even though msPOAS is made to adjust itself to nc-𝜒 noise,
the fact that the algorithm does not account for the intensity bias makes the perceptual
metrics drop for the nc-𝜒 noise cases.

8https://github.com/scilus/fibernavigator
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(a) Noiseless (b) Noisy (c) NLSAM (d) AONLM (e) LPCA (f) msPOAS

Figure 2.5: Phantomas b = 1000 s/mm2 synthetic dataset at SNR 10 for stationary nc-𝜒 noise on
the y = 24 slice. From top to bottom: Raw diffusion MRI, colored FA map, zoom on extracted peaks
from fODF of order 8. Note how NLSAM restores the structure without blurring on the colored FA
map and is the only method to restore the peaks from the noisy dataset in the zoomed white box
region.

2.4.2 Bias introduced in the FA

As shown by the FA difference map on Fig. 2.8, our NLSAM method commits a small
FA error locally with a smaller maximum error than the compared methods. Voxelwise
underestimation is denoted in blue and overestimation in red, where white means the
computed value is close to the expected value. The noisy data largely overestimates the
FA values for the synthetic datasets, while other denoising methods underestimate the real
FA value most of the time. On the b = 1000 s/mm2 datasets, NLSAM has the smallest
spread of FA error. The effect of stabilizing the data prior to denoising can also be seen
by the stable FA median error committed by NLSAM across all noise types. For the
b = 3000 s/mm2 datasets, the need to correct the intensity bias caused by the noise becomes
more important, as seen by the increased error in underestimating the correct FA value for
most methods. For the spatially varying Rician noise case, our method commits the lowest
overestimation, as opposed to AONLM and LPCA, which are developed for this particular
noise case. It is also important to note that in contrast to the other methods, msPOAS
does not explicitly correct for the intensity bias by design, but rather leaves this correction
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(a) 1.2 mm (b) NLSAM (c) AONLM (d) LPCA (e) msPOAS (f) 1.8 mm

Figure 2.6: From top to bottom, the raw high resolution in vivo data corrupted with spatially
varying Rician distributed intensities, the colored FA map and a zoom on two regions of crossings.
All denoised methods were applied on the high spatial resolution 1.2 mm dataset. We also show an
acquisition of the same subject at 1.8 mm for visual comparison. Our NLSAM algorithm is able to
recover more crossings from the 3 way junction of the SLF, the CST and the CC as shown in the
yellow and white boxes. While the 1.8 mm dataset is less noisy, its lower spatial resolution also means
that each voxel contains more heterogeneous tissues and mixed diffusion orientations. The 1.2 mm
denoised dataset shows more crossings without the averaging effect of the larger voxel size. For a
comparable acquisition time, the denoised high resolution dataset has more information than its lower
resolution counterpart without processing.

to subsequent processing steps. The SNR 15 nc-𝜒 noise case is where all the methods
make the biggest error, as they reduce the variance but still suffer from a large bias in FA.
Overall, our method restores the value of the FA for large bundles more accurately. We
also see that most methods make their largest error near the partial volume ball mimicking
cerebrospinal fluid (CSF).

2.4.3 Impact on angular and discrete number of compartments (DNC) error

We now study the angular error and the mean relative error in the discrete number of
compartments (DNC) (Daducci et al., 2014; Paquette et al., 2015). The mean relative
discrete number of compartments error is defined as DNC𝑖 = 100 × |𝑃𝑖𝑡𝑟𝑢𝑒

− 𝑃𝑖𝑒𝑠𝑡
|/𝑃𝑖𝑡𝑟𝑢𝑒

for voxel 𝑖, 𝑃𝑖𝑡𝑟𝑢𝑒
and 𝑃𝑖𝑒𝑠𝑡

is the number of crossings respectively found on the noiseless
dataset and on the compared dataset. All metrics were computed on the voxels containing
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PSNR b = 1000 s/mm2 PSNR b = 3000 s/mm2

SSIM b = 1000 s/mm2 SSIM b = 3000 s/mm2

Figure 2.7: PSNR and SSIM metrics for the SNR 10 stationary and SNR 15 spatially variable noise
cases datasets. All methods can correct the stationary and spatially varying Rician noise case to some
extent while only our NLSAM algorithm has the best performance for the nc-𝜒 noise case, especially
for the spatially varying noise case.

at least two crossings fibers on the noiseless dataset shown previously in Fig. 2.5.
Fig. 2.9 shows the distribution of the angular error and of the DNC error found in

the region studied in addition to the mean angular error. All of the denoising algorithms
have a lower median and mean angular error than the noisy datasets. In addition, the
NLSAM denoised datasets have an almost equal or lower angular error than the other
denoising methods, but with a lower maximum error most of the time as shown by the
smaller whiskers. For the b = 1000 s/mm2 dataset DNC error, all three of AONLM, LPCA
and NLSAM improve on the noisy dataset for the Rician noise case as they are devised for
this kind of data. LPCA also has a better performance than the other two for the spatially
varying Rician noise case, while NLSAM has a lower mean DNC error for both of the
nc-𝜒 noise case. The effect of the intensity bias is also seen on msPOAS, where the DNC
error is always lower than the noisy dataset, but also higher than all the other methods that
take into account the intensity bias. The b = 3000 s/mm2 dataset is much harder, where no
method seems to have a clear advantage in all cases over the others. One interesting thing
to note is that the noisy dataset has a low DNC error for both of the Rician noise case, but
the confidence interval indicates it is in the same range as the denoised datasets.
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(a) Noisy (b) NLSAM (c) AONLM (d) LPCA (e) msPOAS
FA difference for the phantomas stationary nc-𝜒 SNR 10 and spatially varying Rician SNR 15
b = 1000 s/mm2 datasets. Blue values denote underestimation while red values show overesti-
mation of the FA. Top: Stationary nc-𝜒 noise. NLSAM is less biased than the other methods in large,
homogeneous regions, while the compared methods produces more underestimation for the nc-𝜒 case.
Bottom: Spatially variable Rician noise. While being a harder case than the SNR 10 dataset since it
varies from SNR 5 to 15, all methods adapt themselves to some extent to the varying noise profile.

b = 1000 s/mm2 b = 3000 s/mm2

Figure 2.8: Boxplot of the difference in FA for the synthetic datasets at b = 1000 s/mm2 (left)
and b = 3000 s/mm2 (right). The whiskers show 1.5 times the interquartile range (1.5 × IQR),
where outliers are plotted individually. The bars represent the first quantile, the median and the third
quartile. No method performs well on the nc-𝜒 b = 3000 s/mm2 spatially varying noise case, which
is the hardest test case. NLSAM overall produces less error or is equal to the other methods, but has
a lower bias in the FA error along noise type.

2.4.4 Impact on tractography

We now show how denoising techniques impact tractography by evaluating the number of
valid bundles (VB), invalid bundles (IB) (Côté, Girard, et al., 2013) and the valid connection
to connection ratio (VCCR) (Girard et al., 2014) found by the tracking algorithm. A valid
bundle is defined as connecting two ROIs in the ground truth data while an invalid bundle
is a connection made between two ROIs which is not supported by the ground truth data.
The valid connection to connection ratio is the total of valid connections (VC) over the
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b = 1000 s/mm2 b = 3000 s/mm2

Boxplot of the angular error in degrees on the synthetic datasets, where the dot represents the mean
angular error. A low angular error means that the extracted fODFs peaks are aligned with the noiseless
dataset extracted peaks.

b = 1000 s/mm2 b = 3000 s/mm2

Figure 2.9: The mean relative percentage of DNC error for the synthetic datasets. The bar represents
the 95% confidence interval on the mean as computed by bootstrapping. The DNC error is the number
of peaks found in excess or missing in each voxel with respect to the noiseless dataset.

sum of valid and invalid connections (IC), i.e. VCCR = VC / (VC + IC). A good denoising
algorithm should find a high number of valid bundles, a low number of invalid bundles and
a high percentage of valid connection to connection ratio.

Deterministic tractography on the synthetic phantom Table 2.2 shows the results of de-
terministic tractography on the SNR 10, 15 and 20 synthetic datasets for both b = 1000 s/mm2

and b = 3000 s/mm2. The noiseless b = 1000 s/mm2 dataset had 25/27 valid bundles,
55 invalid bundles and a valid connection to connection ratio of 65% and the noiseless
b = 3000 s/mm2 dataset had 27/27 valid bundles, 40 invalid bundles and a valid connec-
tion to connection ratio of 68%. One of the first thing to note is that even though the
noisy dataset always has a high number of valid bundles, it is at the price of a huge number
of invalid bundles. Moreover, the valid connection to connection ratio is systematically
lower for the SNR 10 datasets than any of the denoising methods. This indicates that only
looking at the number of valid and invalid bundles does not show how many streamlines
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reached each region since only at least one streamline is required to make a connection,
thus counting as a valid bundle. Another observation is that denoising helps controlling
the number of invalid bundles and gives a better valid connection to connection ratio in
most cases over the noisy data. For the SNR 15 cases, NLSAM has the highest number
of valid bundles in almost all cases, but at the price of a larger number of invalid bundles
at lower SNR. Another interesting trend is the tradeoff between valid bundles and invalid
bundles: AONLM and LPCA both manage to get a lower number of invalid bundles, but
also tend to have a lower number of valid bundles than msPOAS or NLSAM overall.

For the SNR 20 stationary noise cases, all methods are close in valid bundles with some
difference in the number of invalid bundles. This shows that tractography could benefit
from variable tracking parameters instead of fixed values depending on the preferred trade-
off for the task at hand (Chamberland et al., 2014).

Stationary noise Spatially variable noise
SNR 10 SNR 20 SNR 15 SNR 20

Method / Noise VB IB VCCR VB IB VCCR VB IB VCCR VB IB VCCR

AONLM
b = 1000 s/mm2 Rician 25 78 49% 25 75 51% 23 91 45% 25 89 50%

nc-𝜒 25 88 50% 26 88 52% 21 111 44% 23 93 47%

b = 3000 s/mm2 Rician 25 69 52% 25 60 56% 24 85 50% 26 72 52%
nc-𝜒 25 78 55% 26 67 55% 20 95 48% 22 78 54%

LPCA
b = 1000 s/mm2 Rician 23 61 49% 25 64 54% 16 36 42% 18 38 45%

nc-𝜒 22 66 50% 24 70 54% 16 46 51% 20 56 52%

b = 3000 s/mm2 Rician 23 44 47% 26 46 53% 17 37 42% 19 41 45%
nc-𝜒 20 42 58% 25 57 53% 18 40 55% 20 56 55%

msPOAS
b = 1000 s/mm2 Rician 25 101 49% 25 89 52% 23 129 44% 25 118 46%

nc-𝜒 23 121 40% 25 95 54% 20 131 35% 25 141 41%

b = 3000 s/mm2 Rician 26 108 53% 26 74 58% 25 88 52% 25 93 49%
nc-𝜒 17 84 37% 25 84 57% 22 96 33% 23 94 47%

NLSAM
b = 1000 s/mm2 Rician 25 90 49% 26 96 54% 25 127 42% 25 114 45%

nc-𝜒 25 120 48% 25 90 54% 25 170 28% 26 144 43%

b = 3000 s/mm2 Rician 25 92 50% 26 67 54% 25 108 43% 25 97 47%
nc-𝜒 23 100 45% 24 82 53% 23 173 29% 25 131 37%

Noisy
b = 1000 s/mm2 Rician 25 138 41% 25 107 53% 25 159 36% 25 134 42%

nc-𝜒 25 166 34% 26 119 49% 17 120 9% 25 209 24%

b = 3000 s/mm2 Rician 25 116 46% 27 87 54% 25 160 36% 25 149 42%
nc-𝜒 25 182 36% 26 103 53% 18 124 9% 25 210 24%

Noiseless
VB IC VCCR

b = 1000 s/mm2 25 55 65%
b = 3000 s/mm2 27 40 68%

Table 2.2: Tractometer results for the deterministic tracking.

Tracking the real data We now look at tractography on the in vivo high spatial resolution
dataset and its clinical spatial resolution counterpart of the same subject previously shown
on Fig. 2.6. The high spatial resolution dataset at 1.2 mm isotropic has 40 unique gradient
directions while the lower spatial resolution dataset at 1.8 mm isotropic has 64 unique
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gradient directions for a comparable acquisition time. The background is masked by the
scanner and has a spatially varying Rician noise profile due to the SENSE reconstruction,
which is the specific noise case covered by the AONLM and LPCA denoising algorithm.
We use the deterministic tractography algorithm from (Girard et al., 2014), which consid-
ers anatomical constraints for more anatomically plausible tractography. Fig. 2.10 shows
from top to bottom the left arcuate fasciculus (AF), the inferior fronto-occipital fasciculus
(IFOF) and the corticospinal tract (CST) as dissected automatically by the Tract querier
(Wassermann et al., 2016). The noisy 1.2 mm AF stops prematurely in the frontal part of
the bundle, while the 1.8 mm noisy AF misses the temporal lobe. In contrast, the stream-
lines from the NLSAM denoised bundle go further into the temporal lobe. Also, note how
the right IFOF has a better coverage for all the 1.2 mm datasets and more fanning near the
front of the brain than the noisy 1.8 mm dataset. We also see that the left IFOF is thinner
than its right counterpart is, but most of the bundles tracked from the denoised datasets
produce less spurious tracks while keeping the anatomical details. The LPCA denoised
IFOF stops prematurely for the left posterior part of the bundle, possibly because of a lost
crossing region along the fibers during the denoising process. The CST does show some
commissural fibers through the pons in the noisy 1.8 mm dataset, while they are present
but look like spurious fibers on the noisy 1.2 mm dataset. AONLM can recover some
of those commissural fibers, while NLSAM is the only algorithm that recovers them in
addition to richer fanning near both sides of the motor cortex.
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(a) NLSAM (b) 1.2 mm (c) AONLM (d) LPCA (e) msPOAS (f) 1.8 mm

Figure 2.10: Deterministic tractography for selected bundles on the in vivo dataset. We also show
a T1-weighted image aligned in the diffusion space for anatomical reference. Top: The left arcuate
fasciculus. Note how the denoised NLSAM arcuate fasciculus goes further into the frontal and
temporal region than both of its noisy 1.2 mm and 1.8 mm counterparts. Middle: The inferior
fronto-occipital fasciculus. The AONLM denoised bundle has a denser part for the right IFOF while
the LPCA bundle stops prematurely for the left IFOF, possibly due to a missing crossing along the
bundle. Bottom: The corticospinal tract. We see that NLSAM recovers the commissural fibers in
the pons from the noisy 1.2 mm dataset, which are not even present on the noisy 1.8 mm dataset
nor on the other denoising algorithm’s bundles. NLSAM also recovers more fanning to both sides of
the brain than all the compared methods.

2.5 Discussion

2.5.1 Enhancing the raw data

We quantitatively showed in Fig. 2.7 that denoising restores perceptual information when
compared to the unprocessed noisy data. Taking the spatially varying aspect and the par-
ticular nature of the noise into account is also important since modern scanners implement
parallel imaging, which changes the nature of the noise (Dietrich et al., 2008), leading to a
lower performance for denoising methods not fully taking into account the introduced bias.
Fig. 2.6 shows that this is also qualitatively true for in vivo data, where denoising visually
restores information in regions heavily corrupted by noise. While perceptual metrics might
indicate the performance of an algorithm, one must remember that the relative signal dif-
ference is of interest in diffusion MRI, which is not fully captured by perceptual metrics
like the PSNR or the SSIM. One is also usually interested in diffusion MRI metrics as
opposed to perceptual information brought by the raw diffusion MRI datasets. AONLM
is able to remove most of the noise, but still shows some residuals near the inferior part of
the brain, possibly due to only considering the 3D volumes separately, which means that
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the algorithm can not benefit from the additional angular information brought by diffusion
MRI. LPCA can restore visual information and sharp edges from the noisy dataset, but the
region in the pons, where the noise level is higher and crossing fibers are more complex,
also seems to be piecewise constant. This might arise from the fact that the algorithm
uses all of the DWIs at once for its PCA decomposition step and treats all intensities at
the same in the noise removal step. As for NLSAM, the algorithm only works in the local
angular domain, thus exploiting similar contrast and redundant edge structure under dif-
ferent noise realization. msPOAS also uses a similar idea, where the angular similarity is
weighted according to the Kullback-Leibler divergence to control the importance of dissim-
ilar intensities in the denoising process. Nevertheless, these perceptual metrics show that
denoising improves upon the noisy data, but one should also look at metrics derived from
the studied object of interest i.e. tensor or fODF derived metrics, since high perceptual
metrics might also reflect blurring of diffusion features, which is the main interest in this
type of acquisition rather than the perceived quality.

2.5.2 Impact of the stabilization algorithm on the compared denoising methods

Fig. 2.11 shows the FA map when the compared denoising algorithm are applied on the
stabilized data with the algorithm of (Koay, Özarslan, and Basser, 2009). For this experi-
ment, we consider a voxel as being degenerated if its FA is exactly 0. The first thing to note
is that the algorithm only reprojects the noisy data on plausible Gaussian distributed values
and does not do any denoising. While we used here the algorithm of (Koay, Özarslan, and
Basser, 2009) to correct the noise bias, another interesting approach consist of producing
real-valued datasets as shown in (Eichner et al., 2015). This approach does not require
estimation of 𝜎2 or 𝑁 , but instead use information contained in the phase of complex-
valued acquisitions. Secondly, all of the other compared denoising algorithms produce
some invalid voxels on the raw dataset, while having less degenerated voxels on the stabi-
lized dataset as shown in Table 2.3. Nevertheless, only our NLSAM algorithm does not
produce any degenerated FA voxel on the in vivo dataset. As tractography might rely on
a thresholded FA mask (Chamberland et al., 2014), any missing white matter voxel will
end the tractography early and produce anatomically invalid tractography. In the same way,
computing FA based statistics in search of group differences inside a white matter mask
might lead to erroneous conclusions when degenerated voxels are present. This undesirable
side effect should be avoided when possible by choosing a method producing a low number
of invalid voxels, such as NLSAM.

2.5.3 Reducing the diffusion metrics bias

Fig. 2.8 shows that knowing where errors are committed gives a better view of how de-
noising improves upon the noisy data. We see that our NLSAM algorithm actually has
a smaller maximum error in underestimating the FA most of the time while other meth-
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(a) Noisy (b) NLSAM (c) AONLM (d) LPCA (e) msPOAS

Figure 2.11: Effect of the stabilization algorithm on the compared methods. The top row shows
an axial slice of the in vivo FA map computed on the stabilized dataset, where some voxels are
degenerated. The bottom row shows their location on a binary brain mask. As shown in Table 2.3,
all methods produce degenerated FA voxels on both the regular and stabilized data, with the sole
exception of NLSAM.

AONLM LPCA msPOAS NLSAM Noisy Mask

Built-in Brain mask 83 314 (10.1%) 10 526 (1.3%) 84 319 (10.2%) ⊘ 5 994 (0.7%) 823 068 (100%)
WM mask 29 664 (5.1%) 1 298 (0.2%) 16 665 (2.9%) ⊘ 1 769 (0.3%) 578 418 (100%)

Stabilization Brain mask 10 052 (1.2%) 15 750 (1.9%) 29 377 (3.6%) 0 (0%) 9 395 (3.6%) 823 068 (100%)
WM mask 404 (0.1%) 1 468 (0.3%) 4 267 (0.7%) 0 (0%) 2 850 (0.5%) 578 418 (100%)

Table 2.3: Number of degenerated FA voxels inside a brain mask and a white matter mask for the in
vivo dataset. All methods were compared with their built-in noise estimation on the stabilized version,
but without any additional noise correction factor. The percentage of degenerated voxels is indicated
in parenthesis for each mask, where a voxel is considered degenerated if its FA value is exactly 0.

ods both over and underestimate the real FA value and make larger errors near CSF or at
borders with the background. This could indicate that they are subject to problems with
partial volume effect, which seems less important for NLSAM.

While stabilizing the data alleviates the FA underestimation problem in most cases,
it also helps to reduce the number of degenerated voxels in the in vivo data as shown
in Fig. 2.11. Both AONLM and msPOAS produce less degenerated FA voxels on the
stabilized dataset as shown in Table 2.3, while NLSAM does not produce any degenerated
voxel. In contrast, the noisy data and LPCA have an increased number of degenerated
FA voxels, which might be caused by the diffusion signal being near the noise floor, thus
producing a flat profile that is not properly recovered in this case. Reducing the FA bias
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and avoiding degenerated voxels by including denoising in the processing pipeline could
improve the statistical analysis in along-tract metrics (Colby et al., 2012) when looking for
group differences.

2.5.4 Restoring the coherence of local models

The CSD algorithm relies on the estimation of the fiber response function (frf ), which in
turn relies on the diffusion tensor. To estimate the frf, one must select voxels containing
only a single fiber population. One way to do this is to estimate it from voxels with a
high FA, usually with FA > 0.7 (Descoteaux, Deriche, et al., 2009; Tournier et al., 2007).
We observed that for the SNR 10 dataset with nc-𝜒 noise, the noisy dataset, AONLM
and LPCA could not find as many single fiber voxels based on the FA threshold method as
msPOAS or NLSAM since their reconstructed tensors have an inherently lower FA. This in
turns impacts deconvolution since the estimates used for the deconvolution kernel are less
stable, and lowering the FA threshold too much might violates the single fiber assumption,
which is crucial for the CSD algorithm. One way to circumvent this could be by using the
method of (Tax et al., 2014), which is based on a peak amplitude criterion instead of an FA
threshold to identify single fiber voxels.

Fig. 2.9 shows that msPOAS and NLSAM have larger angular error than AONLM
or LPCA, but this does not seem to impact much the number of valid bundles found
by deterministic tractography. Indeed, the noisy data has the largest angular error in all
cases, but still has a high number of valid bundles in most cases. This also suggests that a
large overestimation or underestimation of fiber crossings (as reflected by the DNC error)
has a higher impact on tractography. Both LPCA and msPOAS have a lower number
of valid bundles than AONLM or NLSAM, which both have a rather symmetric under
and over estimation of the number of peaks. This means that an overall estimation or
underestimation of the number of crossings bias tractography, as it tends to follow false
crossings or stops prematurely due to a lack of crossings, while a distributed error is not
skewed toward these effects.

In Fig. 2.6, we see that denoising restores coherence in regions of crossing fibers that
were lost on the noisy dataset or not even present in the lower spatial resolution 1.8 mm
dataset due to a smaller voxel size. We also see that NLSAM restores more coherent cross-
ings than the other denoising methods in the junction of the SLF and the CST, whereas
the noisy dataset only shows incoherent crossings. This actually enables tractography al-
gorithms to reconstructs tracts that are in agreement with the expected anatomy. In the
same amount of acquisition time, one can thus acquire higher spatial resolution DWIs and
get better angular information by post-processing the acquired data with denoising.
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2.5.5 Limiting spurious fibers from tractography

We studied the impact of denoising techniques on deterministic tractography on a synthetic
dataset in Section 2.4.4. One often has to choose between finding a high number of valid
bundles and invalid bundles, and finding less valid bundles and at the same time reducing
the amount of invalid bundles. The noisy dataset always reaches a high number of valid
bundles, but also at the price of having the highest number of invalid bundles most of
the time. Our NLSAM algorithm shows a good balance between the number of valid and
invalid bundles at low SNR, especially for the spatially varying noise case. This is always a
tradeoff as seen in the ISMRM 2015 tractography challenge9.

For example, the LPCA algorithm has always a low number of invalid bundles, but
also the lowest number of valid bundles for the spatially varying noise case. In opposition,
NLSAM has a high number of valid bundles, but also a high number of invalid bundles
most of the time.

Regarding the deterministic tractography, changing the stepsize or the maximum curv-
ing angle would give different results in terms of connectivity metrics, indicating that the
tractography algorithm and chosen tractography parameters have a non-negligible influence
on the results (Chamberland et al., 2014; Girard et al., 2014). We also used a seeding strat-
egy of 100 seeds per voxel from the ROIs at each bundles endpoints to ensure a maximal
number of valid bundles, which promotes a high number of valid bundles for each dataset.
This shows that the missed bundles are hard to recover or not supported by the data itself,
as opposed to being missed because of inadequate seeding (Côté, Girard, et al., 2013). On
the other hand, this can artificially increase the number of invalid bundles, which could be
reduced by reducing the number of seeds per voxel. Since automatic tractography pruning
techniques such as (Côté, Garyfallidis, et al., 2015) might help reduce the number of spu-
rious tracks, this would indicate that having a higher number of valid bundles would be
preferable since invalid bundles could be potentially removed afterward. In contrast, a low
number of valid bundles cannot be circumvented with further post-processing. Neverthe-
less, denoising increases the valid connection to connection ratio and reduces the number
of invalid bundles, thus bringing confidence in the validity of the tractography results when
compared to the noisy datasets.

For the in vivo dataset tracking shown in Fig. 2.10, we see that tractography benefits
from higher spatial resolution acquisitions, but that the produced tracts are slightly noisier.
Combining the high spatial resolution, highly noisy dataset with a denoising algorithm
at the beginning of the processing pipeline gives more anatomically plausible tracts in
the end. The AF and CST produced by the NLSAM denoised dataset are both more
anatomically plausible than their noisy or lower spatial resolution counterpart, which have
less fanning fibers in the case of the CST. This shows that high resolution DWIs exhibits
additional anatomical information due to the smaller voxel size, which might not be easily

9http://www.tractometer.org/ismrm_2015_challenge/
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discernible at a lower spatial resolution (Sotiropoulos et al., 2013). Acquiring at higher
spatial resolution could also help resolve complicated fiber configurations such as crossings
fibers from fanning fibers or disentangle small structures like the optic chiasm (Roebroeck
et al., 2008), which is not possible at lower spatial resolution (Calabrese et al., 2014; Jones
et al., 2013).

2.5.6 Other methods for high spatial resolution acquisitions

We have shown in Fig. 2.6 that high spatial resolution acquisitions which are noisy at
first can reveal improved anatomical details when they are subsequently denoised. This
indeed suggests that high resolution acquisition can now be acquired on clinical scanners.
Recently, other algorithms enabling a high spatial resolution at the acquisition level have
been suggested (Ning et al., 2016; Scherrer et al., 2015). These methods both rely on
smartly fusing the (complementary) data of multiple acquisitions acquired at a lower spatial
resolution to obtain a single high resolution volume. While the approach we suggest here
is to acquire a single volume using a standard sequence, both techniques are fundamentally
exploiting different aspects to increase the available spatial resolution. As such, it would be
possible to combine our denoising algorithm with the reconstruction algorithms presented
in (Ning et al., 2016; Scherrer et al., 2015).

2.5.7 Current limitations and possible improvements

Although most models assume a Rician or nc-𝜒 noise distribution, this does not take into
account the noise correlation between each coils or the effect of acceleration techniques
that subsample the k-space (Aja-Fernández et al., 2014). The development of correction
factors for existing algorithms relies on computing the effective values for the noise stan-
dard deviation 𝜎 and the number of degrees of freedom of the nc-𝜒 distribution, which
is expected to be smaller than 2N. These values can be used to take into account the cor-
relation introduced between the coils in parallel imaging acquisitions (Brion et al., 2013).
To consider the fact that the noise distribution nature might vary spatially in addition to
the noise variance, one can use a priori information obtained from the scanner through
the SENSE sensitivity maps or the GRAPPA weights and need to estimate the correlation
between each of the receiver coils. We could explicitly add such a correction to our algo-
rithm since we work locally with the stabilization algorithm, Eqs. (2.1) and (2.4). Using
multiband acceleration also modifies the noise properties due to the introduced aliasing,
which further strengthen the idea that spatially adaptive denoising algorithms should be
used on modern scanners and sequences (Uǧurbil et al., 2013). Nevertheless, obtaining
the needed map for a SENSE reconstruction or the required GRAPPA weights might not
be easily feasible in a clinical setting. We also intend to revisit the order in which pre-
processing algorithms (motion correction, eddy currents correction, distortions correction)
should be applied since these steps require interpolation, which could also introduce spatial
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correlation in the noise profile. This also makes the noise distribution deviate slightly from
its theoretical distribution, where parameters vary spatially instead of being fixed constants
for the whole volume (Aja-Fernández et al., 2014). Nevertheless, we have observed experi-
mentally that our NLSAM algorithm is robust to small subject motion thanks to the local
neighborhood processing. In cases where artifacts (such as EPI distortions) might under-
mine the denoising process, one can first correct for these artifacts using a nearest neighbor
interpolation, which should not modify the noise distribution. Subsequent corrections can
then be performed after denoising using other kinds of interpolation as needed.

While developing the NLSAM algorithm, we found that using a bigger 3D patchsize
did not significantly improve the denoising quality, while augmenting both computing time
and memory requirements. Our implementation also allows one create the smallest subset
of angular neighbors covering all DWIs through a greedy set cover algorithm. This option
(named “NLSAM fast” in Table 2.4) leads to a speedup of 3 to 4 times, but at the cost
of slightly reducing the denoising performance since some DWIs might be denoised only
once instead of multiple times. We used the fully covered version for our experiments,
which were run on a machine running Ubuntu Linux 12.04 with a quad core Intel i7 930
at 2.8 GHz and 18 GB of RAM. Table 2.4 reports the runtime of the various algorithms in
minutes and their RAM usage. While the computing time required by NLSAM is larger
than the other methods, our Python implementation is fairly unoptimized and could be
sped up to competitive runtimes by various code optimizations or lowering the maximum
number of iterations in Eq. (2.4).

AONLM LPCA msPOAS NLSAM NLSAM fast
Time (mins) 22.2 3.7 4.0 37.1 9.8
RAM usage (MB) 552 640 1543 606 412

Table 2.4: Required time and RAM usage for the compared denoising algorithms on the
b = 1000 s/mm2 SNR 10 dataset with stationary Rician noise.

2.6 Conclusion

In this paper, we introduced a new denoising method, the Non Local Spatial and Angular
Matching (NLSAM), which is specifically designed to take advantage of diffusion MRI
data. Our method is based on 1) Correcting the spatially varying Rician and nc-𝜒 noise
bias 2) Finding similar DWIs through angular neighbors to promote sparsity 3) Iteratively
denoise similar patches and their neighbors locally with dictionary learning, where the
local variance is used as an upper bound on the ℓ2 reconstruction error. We extensively
compared quantitatively our new method against three other state-of-the-art denoising
methods on a synthetic phantom and qualitatively on an in vivo high resolution dataset.
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We also showed that taking into account both the effect of spatially varying noise and
non-Gaussian distributed noise is crucial to denoise effectively the DWIs. Our NLSAM
algorithm is freely available10, restores perceptual information, removes the noise bias in
common diffusion metrics and produces more anatomically plausible tractography on a high
spatial resolution in vivo dataset when compared to a lower spatial resolution acquisition
of the same subject.

Since our NLSAM algorithm can be used on any already acquired dataset and does not
add any acquisition time, this shows that denoising the data should be a pre-processing
part of every pipeline, just like any other correction method that is commonly applied
for artifacts removal. With that in mind, the diffusion MRI community could aim for
higher spatial resolution DWIs, without requiring the use of costly new hardware or com-
plicated acquisition schemes. This could in turn reveal new anatomical details, which are
not achievable at the spatial resolution currently used in diffusion MRI.

2.7 Appendix: The NLSAM Algorithm

This appendix outlines the NLSAM algorithm as pseudo code. The original implementa-
tion in Python is freely available at https://github.com/samuelstjean/nlsam.

Algorithm 2.1: The proposed NLSAM denoising algorithm.
Data: 4D dMRI data, 𝑎𝑛 = number of angular neighbors, 𝑝𝑠 = spatial patch size, 𝑁 = Number

of coils, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 40
Result: Denoised data with NLSAM
Step 1;

Find 𝜎𝐺 with either PIESNO or Eq. (2.3);
Apply noise stabilization with 𝜎𝐺 and 𝑁 coils;

foreach DWI in dMRI data do
Step 2;

Find the closest 𝑎𝑛 angular neighbors;
Create 4D block with b0, DWI and its 𝑎𝑛 neighbors;
Extract all overlapping patches of size (𝑝𝑠, 𝑝𝑠, 𝑝𝑠);

Step 3;
Apply Eq. (2.1) to find D;
Iterate Eq. (2.4) to find 𝜶 until convergence or 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is reached;
Average overlapping patches based on sparsity with Eq. (2.5);
Return to original shape;

end

foreach Denoised DWI in dMRI data do
Average all Denoised DWI representations;

end

10https://github.com/samuelstjean/nlsam

46

https://github.com/samuelstjean/nlsam
https://github.com/samuelstjean/nlsam


Bibliography

[1] S. Aja-Fernandez, C. Alberola-Lopez, and C.-F. Westin. “Noise and signal estimation in magnitude
MRI and Rician distributed images: a LMMSE approach.” In: IEEE transactions on image processing
17.8 (Aug. 2008), pp. 1383–98 (cit. on pp. 19, 24).

[2] S. Aja-Fernández, G. Vegas-Sánchez-Ferrero, and A. Tristán-Vega. “Noise estimation in parallel MRI:
GRAPPA and SENSE.” In: Magnetic resonance imaging 32.3 (Apr. 2014), pp. 281–90 (cit. on pp. 19,
22, 44, 45).

[3] D. C. Alexander et al. “Orientationally invariant indices of axon diameter and density from diffusion
MRI”. In: NeuroImage 52.4 (2010), pp. 1374–1389 (cit. on p. 19).

[4] R. Bai, C. G. Koay, E. Hutchinson, and P. J. Basser. “A framework for accurate determination of the
T2 distribution from multiple echo magnitude MRI images”. In: Journal of Magnetic Resonance 244
(2014), pp. 53–63 (cit. on p. 22).

[5] L. Bao, M. Robini, W. Liu, and Y. Zhu. “Structure-adaptive sparse denoising for diffusion-tensor
MRI.” In: Medical image analysis 17.4 (May 2013), pp. 442–57 (cit. on pp. 19, 21).

[6] S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, and J. Polzehl. “Adaptive smoothing of multi-
shell diffusion weighted magnetic resonance data by msPOAS”. In: NeuroImage 95 (July 2014), pp. 90–
105 (cit. on pp. 20, 24, 29).

[7] V. Brion et al. “Noise correction for HARDI and HYDI data obtained with multi-channel coils and
sum of squares reconstruction: an anisotropic extension of the LMMSE.” In: Magnetic resonance
imaging 31.8 (Oct. 2013), pp. 1360–71 (cit. on pp. 19, 20, 44).

[8] E. Calabrese, A. Badea, C. L. Coe, G. R. Lubach, M. A. Styner, and G. A. Johnson. “Investigating
the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion
tractography: Time well spent?” In: Human Brain Mapping 35.11 (Nov. 2014), pp. 5667–5685 (cit.
on p. 44).

[9] E. J. Candès, M. B. Wakin, and S. P. Boyd. “Enhancing Sparsity by Reweighted l1 Minimization”. In:
Journal of Fourier Analysis and Applications 14.5-6 (Oct. 2008), pp. 877–905 (cit. on p. 25).

[10] M. Chamberland, K. Whittingstall, D. Fortin, D. Mathieu, and M. Descoteaux. “Real-time multi-
peak tractography for instantaneous connectivity display.” English. In: Frontiers in neuroinformatics
8.May (Jan. 2014), p. 59 (cit. on pp. 31, 37, 40, 43).

[11] J. B. Colby, L. Soderberg, C. Lebel, I. D. Dinov, P. M. Thompson, and E. R. Sowell. “Along-tract
statistics allow for enhanced tractography analysis”. In: NeuroImage 59.4 (Feb. 2012), pp. 3227–3242
(cit. on p. 42).

[12] M.-A. Côté, E. Garyfallidis, H. Larochelle, and M. Descoteaux. “Cleaning up the mess : tractography
outlier removal using hierarchical QuickBundles clustering”. In: International Symposium on Magnetic
Resonance in Medicine (ISMRM’15) 98 (2015), p. 6046 (cit. on p. 43).

[13] M.-A. Côté, G. Girard, A. Boré, E. Garyfallidis, J.-c. Houde, and M. Descoteaux. “Tractometer:
towards validation of tractography pipelines.” In: Medical image analysis 17.7 (Oct. 2013), pp. 844–57
(cit. on pp. 30, 35, 43).

47



Bibliography

[14] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot. “An optimized blockwise nonlocal
means denoising filter for 3-D magnetic resonance images.” In: IEEE transactions on medical imaging
27.4 (Apr. 2008), pp. 425–41 (cit. on p. 19).

[15] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. “Image denoising by sparse 3-D transform-domain
collaborative filtering.” In: IEEE transactions on image processing 16.8 (Aug. 2007), pp. 2080–95 (cit.
on pp. 21, 24).

[16] A. Daducci et al. “Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery
From Diffusion MRI”. In: IEEE Transactions on Medical Imaging 33.2 (Feb. 2014), pp. 384–399 (cit.
on pp. 30, 33).

[17] I. Daubechies, R. Devore, M. Fornasier, and C. S. Güntürk. “Iteratively reweighted least squares
minimization for sparse recovery”. In: Communications on Pure and Applied Mathematics 63 (2010),
pp. 1–38 (cit. on p. 25).

[18] M. Descoteaux and C. Poupon. “Diffusion-Weighted MRI”. In: Comprehensive Biomedical Physics.
Elsevier, 2014, pp. 81–97 (cit. on p. 19).

[19] M. Descoteaux, R. Deriche, T. Knosche, and A. Anwander. “Deterministic and Probabilistic Tractog-
raphy Based on Complex Fibre Orientation Distributions”. In: IEEE Transactions on Medical Imaging
28.2 (Feb. 2009), pp. 269–286 (cit. on p. 42).

[20] O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser, and S. O. Schoenberg. “Influence
of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise
characteristics.” In: Magnetic resonance imaging 26.6 (July 2008), pp. 754–62 (cit. on pp. 19, 22, 39).

[21] C. Eichner et al. “Real diffusion-weighted MRI enabling true signal averaging and increased diffusion
contrast”. In: NeuroImage 122 (Nov. 2015), pp. 373–384 (cit. on pp. 19, 40).

[22] M. Elad and M. Aharon. “Image Denoising Via Sparse and Redundant Representations Over Learned
Dictionaries”. In: IEEE Transactions on Image Processing 15.12 (Dec. 2006), pp. 3736–3745 (cit. on
pp. 21, 22).

[23] A. Foi. “Noise estimation and removal in MR imaging: The variance-stabilization approach”. In: 2011
IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2 (Mar. 2011), pp. 1809–
1814 (cit. on p. 24).

[24] E. Garyfallidis et al. “Dipy, a library for the analysis of diffusion MRI data”. In: Frontiers in Neuroin-
formatics 8.February (2014), pp. 1–17 (cit. on p. 30).

[25] G. Girard, K. Whittingstall, R. Deriche, and M. Descoteaux. “Towards quantitative connectivity anal-
ysis: reducing tractography biases.” In: NeuroImage 98 (Sept. 2014), pp. 266–78 (cit. on pp. 30, 35,
38, 43).

[26] A. Gramfort, C. Poupon, and M. Descoteaux. “Denoising and fast diffusion imaging with physically
constrained sparse dictionary learning.” In: Medical image analysis 18.1 (Jan. 2014), pp. 36–49 (cit. on
pp. 20, 22, 25).

[27] D. K. Jones, T. R. Knösche, and R. Turner. “White matter integrity, fiber count, and other fallacies:
The do’s and don’ts of diffusion MRI”. In: NeuroImage 73 (June 2013), pp. 239–254 (cit. on pp. 19,
44).

[28] C. G. Koay and P. J. Basser. “Analytically exact correction scheme for signal extraction from noisy
magnitude MR signals”. In: Journal of Magnetic Resonance 179.2 (Apr. 2006), pp. 317–322 (cit. on
pp. 24, 25).

48



Bibliography

[29] C. G. Koay, E. Özarslan, and P. J. Basser. “A signal transformational framework for breaking the noise
floor and its applications in MRI”. In: Journal of Magnetic Resonance 197.2 (Apr. 2009), pp. 108–119
(cit. on pp. 22–24, 26, 40).

[30] C. G. Koay, E. Özarslan, and C. Pierpaoli. “Probabilistic Identification and Estimation of Noise
(PIESNO): A self-consistent approach and its applications in MRI”. In: Journal of Magnetic Reso-
nance 199.1 (July 2009), pp. 94–103 (cit. on pp. 24, 26).

[31] F. Lam, S. D. Babacan, J. P. Haldar, M. W. Weiner, N. Schuff, and Z. P. Liang. “Denoising diffusion-
weighted magnitude MR images using rank and edge constraints”. In: Magnetic Resonance in Medicine
71.3 (Apr. 2014), pp. 1272–1284 (cit. on pp. 20, 24).

[32] R. W. Liu, L. Shi, W. Huang, J. Xu, S. C. H. Yu, and D. Wang. “Generalized total variation-based
MRI Rician denoising model with spatially adaptive regularization parameters.” In: Magnetic resonance
imaging 32.6 (July 2014), pp. 702–20 (cit. on p. 19).

[33] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi. “Nonlocal Transform-Domain Filter for Vol-
umetric Data Denoising and Reconstruction”. In: IEEE Transactions on Image Processing 22.1 (Jan.
2013), pp. 119–133 (cit. on pp. 19, 21, 24, 26).

[34] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. “Online dictionary learning for sparse coding”. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning - ICML ’09. Vol. 11. New
York, New York, USA: ACM Press, Aug. 2009, pp. 1–8 (cit. on pp. 21, 22, 25).

[35] J. V. Manjón, P. Coupé, L. Concha, A. Buades, D. L. Collins, and M. Robles. “Diffusion Weighted
Image Denoising Using Overcomplete Local PCA”. In: PLoS ONE 8.9 (Sept. 2013). Ed. by G. Gong,
e73021 (cit. on pp. 20, 25, 26, 29).

[36] J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles. “Adaptive non-local means
denoising of MR images with spatially varying noise levels.” In: Journal of magnetic resonance imaging
: JMRI 31.1 (Jan. 2010), pp. 192–203 (cit. on pp. 19, 20, 24, 29).

[37] L. Ning et al. “A joint compressed-sensing and super-resolution approach for very high-resolution
diffusion imaging”. In: NeuroImage 125 (Jan. 2016), pp. 386–400 (cit. on p. 44).

[38] B. A. Olshausen and D. J. Field. “Emergence of simple-cell receptive field properties by learning a
sparse code for natural images.” In: Nature 381.6583 (June 1996), pp. 607–9 (cit. on pp. 21, 26).

[39] M. Paquette, S. Merlet, G. Gilbert, R. Deriche, and M. Descoteaux. “Comparison of sampling strate-
gies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging”. In: Mag-
netic Resonance in Medicine 73.1 (Jan. 2015), pp. 401–416 (cit. on pp. 30, 33).

[40] J. Rajan, J. Veraart, J. Van Audekerke, M. Verhoye, and J. Sijbers. “Nonlocal maximum likelihood
estimation method for denoising multiple-coil magnetic resonance images.” In: Magnetic Resonance
Imaging 30.10 (Dec. 2012), pp. 1512–1518 (cit. on p. 19).

[41] A. Roebroeck et al. “High-resolution diffusion tensor imaging and tractography of the human optic
chiasm at 9.4 T”. In: NeuroImage 39.1 (Jan. 2008), pp. 157–168 (cit. on p. 44).

[42] B. Scherrer, O. Afacan, M. Taquet, S. P. Prabhu, A. Gholipour, and S. K. Warfield. Accelerated High
Spatial Resolution Diffusion-Weighted Imaging. Ed. by S. Ourselin, D. C. Alexander, C.-F. Westin,
and M. J. Cardoso. Vol. 9123. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2015, pp. 69–81 (cit. on p. 44).

[43] S. N. Sotiropoulos et al. “Advances in diffusion MRI acquisition and processing in the Human Con-
nectome Project”. In: NeuroImage 80 (Oct. 2013), pp. 125–143 (cit. on p. 44).

49



Bibliography

[44] S. St-Jean, P. Coupé, and M. Descoteaux. “Non Local Spatial and Angular Matching : a new denois-
ing technique for diffusion MRI”. In: International Symposium on Magnetic Resonance in Medicine
(ISMRM’14). 2014 (cit. on p. 20).

[45] C. M. Tax, B. Jeurissen, S. B. Vos, M. A. Viergever, and A. Leemans. “Recursive calibration of the
fiber response function for spherical deconvolution of diffusion MRI data”. In: NeuroImage 86 (2014),
pp. 67–80 (cit. on p. 42).

[46] J.-D. Tournier, F. Calamante, and A. Connelly. “Robust determination of the fibre orientation dis-
tribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.” In:
NeuroImage 35.4 (May 2007), pp. 1459–72 (cit. on pp. 30, 42).

[47] A. Tristán-Vega and S. Aja-Fernández. “DWI filtering using joint information for DTI and HARDI.”
In: Medical image analysis 14.2 (Apr. 2010), pp. 205–18 (cit. on pp. 19, 20).

[48] K. Uǧurbil et al. “Pushing spatial and temporal resolution for functional and diffusion MRI in the
Human Connectome Project”. In: NeuroImage 80.21 (2013), pp. 80–104 (cit. on p. 44).

[49] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, and K. Ugurbil. “The WU-
Minn Human Connectome Project: An overview”. In: NeuroImage 80 (Oct. 2013), pp. 62–79 (cit. on
p. 19).

[50] D. Varadarajan and J. P. Haldar. “A Majorize-Minimize Framework for Rician and Non-Central Chi
MR Images”. In: IEEE Transactions on Medical Imaging 34.10 (Oct. 2015), pp. 2191–2202 (cit. on
p. 19).

[51] J. Veraart, J. Rajan, R. R. Peeters, A. Leemans, S. Sunaert, and J. Sijbers. “Comprehensive framework
for accurate diffusion MRI parameter estimation.” In: Magnetic resonance in medicine : official journal
of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 70.4 (Oct.
2013), pp. 972–84 (cit. on p. 22).

[52] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality assessment: from error
visibility to structural similarity.” In: IEEE transactions on image processing 13.4 (Apr. 2004), pp. 600–
12 (cit. on p. 29).

[53] D. Wassermann et al. “The white matter query language: a novel approach for describing human white
matter anatomy”. In: Brain Structure and Function 221.9 (Dec. 2016), pp. 4705–4721 (cit. on pp. 30,
38).

50



There is no law except the law that there is no law.
John Archibald Wheeler

3
Obtaining representative core streamlines

for white matter tractometry of the human
brain

Based on

Maxime Chamberland, Samuel St-Jean, Chantal M. W. Tax and Derek K. Jones
Obtaining representative core streamlines for white matter tractometry of the human brain
Computational Diffusion MRI (CDMRI) workshop of MICCAI 2018, Granada. Springer
International Publishing, Pages 3–19.

51



Chapter 3. Obtaining representative core streamlines for tractometry

Abstract

Diffusion MRI infers information about the micro-structural architecture of
the brain by probing the diffusion of water molecules. The process of virtually re-
constructing brain pathways based on these measurements is called tractography.
Various metrics can be mapped onto pathways to study their micro-structural
properties. Tractometry is an along-tract profiling technique that often requires
the extraction of a representative streamline for a given bundle. This is tradi-
tionally computed by local averaging of the spatial coordinates of the vertices,
and constructing a single streamline through those averages. However, the re-
sulting streamline can end up being highly non-representative of the shape of
the individual streamlines forming the bundle. In particular, this occurs when
there is variation in the topology of streamlines within a bundle (e.g., differ-
ences in length, shape or branching). We propose an envelope-based method to
compute a representative streamline that is robust to these individual differences.
We demonstrate that this method produces a more representative core stream-
line, which in turn should lead to more reliable and interpretable tractometry
analyses.

Keywords: Tractography, Tractometry, Bundle envelope, Core streamline, Diffusion MRI
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3.1. Introduction

3.1 Introduction

Tractography derived from diffusion MRI infers information about the structural architec-
ture of the brain. In most studies, diffusion MRI metrics (e.g. fractional anisotropy (FA))
are often collapsed to a single scalar value per bundle (Jones, Catani, et al., 2005). Recently,
a trend towards tract profiling (Colby et al., 2012; Yeatman et al., 2012) and direction-
specific measurements within a voxel has emerged. Along-tract analysis is a technique that
maps a given metric over the course of a bundle. The term tractometry was originally in-
troduced by Bells et al. (2011) and the technique has been refined over the years by various
groups (Colby et al., 2012; Corouge et al., 2006; De Santis et al., 2014; Jones, Travis, et al.,
2005; Yeatman et al., 2012). It can be used to characterize areas of the brain with abnormal
properties in patients (Cousineau et al., 2017; Dayan et al., 2016; Groeschel et al., 2014).

At the core of tractometry lies the concept of a representative streamline (O’Donnell
et al., 2009) which is used to project metrics along the course of a given bundle. This is
typically done by resampling all streamlines forming the bundle to n points and by averag-
ing their spatial coordinates in a point-wise fashion (Colby et al., 2012; O’Donnell et al.,
2009; Yeatman et al., 2012). This technique will produce a reasonable estimate of the av-
erage trajectory when there is very little branching and dispersion between the streamlines
forming the pathway (Fig. 3.1, left). However, it is known that streamlines within a given
bundle can vary in length and orientation, making direct averaging of their coordinates in-
appropriate (O’Donnell et al., 2009). Indeed, if the underlying streamlines are even slightly
dispersed from each other, the resulting representative streamline obtained by simply av-
eraging the coordinates can end up running outside of the shape of the bundle (Fig. 3.1,
right). Not only does this representation become anatomically implausible, but also it can
directly hamper further steps down the tractometry pipeline (e.g. when averaging metrics
along different sections of the pathway). A common solution to overcome this problem is
to perform tractometry only within the compact portion of the pathway by excluding data
from the extremities, which tend to include fanning (Glozman et al., 2018; Yeatman et al.,
2012). This approach greatly helps to 1) quickly obtain a representative streamline and 2)
mitigate variability between subjects since bundles are essentially reduced to a simpler rep-
resentation. However, cutting both extremities inherently limits the benefits conferred by
state-of-the-art tractography techniques that can recover fanning and branching portions
of white matter fasciculi. Here, we propose a technique to generate a representative stream-
line that is robust to multiple streamline lengths, arching configurations and orientations
that naturally occur within a bundle.
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Chapter 3. Obtaining representative core streamlines for tractometry

Figure 3.1: Point-wise streamline averaging illustrated for two scenarios: pruned bundles (left) and
fanning bundles (right). The mean streamline (purple) runs outside of the shape of the bundle when
streamlines within a bundle slightly diverge from each other. Bundles: cingulum (Cg) and arcuate
fasciculus (AF).

3.2 Theory and Methods

3.2.1 Acquisition and processing

Multi-shell high angular resolution diffusion MRI data were acquired on a Siemens Prisma
scanner (TR = 4500 ms, TE = 80 ms, with b-values of 1200, 3000, 5000 s/mm2, 60 diffu-
sion directions per shell and 15 non diffusion weighted images at a voxel size of 1.5 mm
isotropic). Correction for subject motion and distortions caused by eddy currents were
performed using FSL eddy and topup (Andersson and Sotiropoulos, 2016). Next, fiber
orientation distributions functions (fODF) were computed using multi-shell multi-tissue
constrained spherical deconvolution (Jeurissen et al., 2014). Tractography was performed
using FiberNavigator (Chamberland et al., 2014), followed by manual bundle extraction
of the corticospinal tract (CST), fornix (Fx), cingulum (Cg), arcuate fasciculus (AF) and
inferior fronto-occipital fasciculus (iFOF). The main goal of the dissection plan was to
preserve the characteristic anatomy, including fanning and branching, of each bundle (Ro-
jkova et al., 2016). Tractography parameters were set as follows: min. fODF amplitude:
0.1, step size: 0.5 mm, max. angular threshold: 45∘, min./max. streamline length: 30/200
mm with 1.5 million seeds covering the whole brain.
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3.2. Theory and Methods

3.2.2 Proposed representative streamline extraction algorithm

The proposed method starts by averaging the top 5% longest streamlines from a bundle of
interest to get a coarse approximation of the bundle’s core, defined by C = {𝑝𝑖 ∈ ℝ3|𝑖 =
1, … , 𝑛} where 𝑝𝑖 is a 3D point of the representative streamline. This core C will serve
as guidance for the propagation of a convex hull envelope along the entirety of the bundle.
Next, we generate an orthogonal plane P𝑖 at each point 𝑝𝑖 ∈ C using the normal vector

⃗𝑛𝑖 formed by 𝑝𝑖 and 𝑝𝑖+1. Then, for each streamline from the bundle of interest, we find
all line segments intersecting the current orthogonal plane P𝑖 up to a distance threshold
of 𝑡 mm (which is interactively defined in our implementation). If multiple points from a
streamline intersect a plane P𝑖 (e.g., a spurious streamline doubling back on itself ), only
the closest point to C is preserved so that the actual shape of the bundle is represented by
its 3D envelope. We then compute a 2D convex hull H𝑖 ⊂ P𝑖 for each group of points
found in the previous step as illustrated in Fig. 3.2. Finally, the centers of mass of each hull
H𝑖 are linked together by fitting a 4𝑡ℎ order b-spline curve comprising 𝑘 knots, where 𝑘 is
a user-defined parameter. This step ensures that the representative streamline is located at
the center since there is no guarantee that this is the case using the initial approximation
of C defined using the longest streamlines. The proposed framework is integrated within
FiberNavigator, where all parameters are accessible to the user.

Figure 3.2: Example of a cross-section generated along the core of a bundle from a normal plane
(P𝑖). The black dots represent in-plane streamlines with their convex hull H𝑖 in dark blue. On the
right, the representative streamline (light blue) is obtained by linking the center of mass of each
convex-hull (light blue dot).

3.2.3 Label maps generation

We compared our technique with conventional point-based resampling (𝑛 = 50) computed
using the mean distance flip algorithm, accounting for streamline direction (Cousineau
et al., 2017). Distance maps were then generated by computing the minimum Euclidean
distance between each point of the bundle and the core representative streamline. A transfer
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Chapter 3. Obtaining representative core streamlines for tractometry

function was used to visually map sections of the bundle assigned to respective locations
along the core. A unique and smooth color grading from one end of the bundle to the other
indicates a correct assignment along C, which in turn reflects how the diffusion metrics are
averaged locally.

3.3 Results

3.3.1 Bundles without branching and dispersion

Fig. 3.3 shows results on tubular-shaped bundles (e.g. CST, Fx, iFOF) with little disper-
sion between the streamlines’ starting and ending points. One can observe that the core
streamline (i) has a length comparable to the rest of the streamlines within each bundle;
(ii) lies inside the boundaries defined by all the streamlines. The color grading also shows
a gradual labeling of the streamlines’ points along the core.

3.3.2 Bundles with branching and dispersion

Fig. 3.4 shows results on more complex bundles having different streamline lengths. In this
example, the Cg consists of sub-components that connect the posterior cingulate cortex
(PCC) to the medial prefrontal cortex (red streamlines) and the PCC to the parahippocam-
pal gyrus (green streamlines). The complex configuration of the bundles inherently leads to
an unrepresentative streamline when using the conventional point-based averaging (white
arrows), as well as incorrect assignment of different sections along the bundle (indicated by
the repeated green sections). The proposed cross-section method recovers an anatomically
representative pathway that stays within the shape of the bundle.

Figure 3.3: Label maps and representative streamlines illustrated for tubular-shaped bundles with
little dispersion at the end points (e.g. directly connecting two brain regions) show agreement between
the two methods (square: resampling method, circle: proposed method).
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3.3. Results

Figure 3.4: Complex fanning bundles with dispersed end-points reveal an astray mean streamline
when using a conventional resampling approach to compute the core C, as well as incorrect label
mapping (white arrows).

In the second example, the AF aggregates multiple sub-components with various arch-
ing streamlines that project to different areas of the lateral cortex. The representative
streamline extracted from traditional averaging appears shorter than the full course of the
bundle (white streamline). The inferior temporal aspect of the bundle (dark blue) is also
incorrectly averaged and collapsed to the first point of the representative streamline. The
last panel shows that the representative streamline traverses the full length of the bundle
when using the proposed technique, which is also supported by the unique color grading
of the label map.

Fig. 3.5 shows FA profiles computed along a tubular-shaped tract (Fx) and a fanning-
shaped tract (AF). The Fx profiles appear similar in both resampling and cross-sections
methods, except for a small shift induced by the larger anterior extent of the proposed
method. The AF shows large differences between the two techniques in terms of profiling
(red star), mostly due to the sub-optimality of the mean streamline as the representative
streamline.
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Chapter 3. Obtaining representative core streamlines for tractometry

Figure 3.5: FA profiles illustrated for two representative streamline extraction algorithms. Left:
Similar profiles are obtained for a tubular-shaped bundle (Fx). Right: Different profiles are obtained for
a branching bundle (AF). The red star shows the location on the bundle where the maximum difference
between the two methods occurs. Outlines of the bundles are shown for anatomical reference.

3.4 Discussion and Conclusion

We have shown that taking an average streamline as the representative pathway of a bundle
can lead to non-representative results in the presence of tract branching and dispersion.
To address this problem, we used orthogonal planes throughout the bundle to derive a
representative core streamline that traverses its entire center of mass and therefore, allowing
for a more interpretable tractometry. Generating core streamlines based on convex-hulls has
been applied previously in the creation of 3D meshes for visualization (Enders et al., 2005),
as well as for extracting skeleton streamlines for connectivity analysis using an atlas (Duda
et al., 2010). Here, we additionally show that this approach produces more representative
core streamlines for tractometry analyses in various bundle shapes. A drawback to the
current approach is that it requires that at least some streamlines run from one end of the
bundle to the other. Otherwise, the cross-section propagation may halt prematurely and
thus affect the computation of the representative streamline. In addition, we assume that
the input bundles are already pruned from streamline loops and undesired false positives.

Since tract morphology varies between subjects, truncation and resampling streamlines
based on a length criterion (Colby et al., 2012) or number of points (Cousineau et al., 2017;
Yeatman et al., 2012) may inadvertently discard important information that is specific to
the pathway of interest. This loss of information is inherent to the truncation approach
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and should be minimized when assigning diffusion metrics to a representative pathway
to preserve the full extent of a bundle as much as possible (O’Donnell et al., 2009). We
showed that this inevitably leads to discrepancies in tract profiling when assigning diffusion
metrics to a representative streamline. An alternative approach to truncation and tract aver-
aging could be to remove the need for a representative streamline by matching geometrical
properties of streamlines between subjects (Glozman et al., 2018; Parker et al., 2016). Yet,
the performance of those techniques still requires investigation for complex white matter
configurations (e.g. fanning and branching). Nevertheless, truncation can also be useful
to reduce potential issues associated with tractography and could still be applied in a post-
processing step to our technique, once the representative streamline has been generated.

Finally, a potential improvement to the proposed method would be to recursively gen-
erate multiple convex hulls, allowing the algorithm to recover various sub-branches in fan-
ning bundles. This could help in achieving a simplified—yet still anatomically accurate—
representation of the core of a bundle, which is the centerpiece for the future design of
tractometry pipelines.
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There’s a lesson here, and I’m not the one that’s gonna figure
it out.

Rick and Morty
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Abstract

Diffusion weighted magnetic resonance imaging (dMRI) provides a noninvasive
virtual reconstruction of the brain’s white matter structures through tractogra-
phy. Analyzing dMRI measures along the trajectory of white matter bundles
can provide a more specific investigation than considering a region of interest
or tract-averaged measurements. However, performing group analyses with this
along-tract strategy requires correspondence between points of tract pathways
across subjects. This is usually achieved by creating a new common space where
the representative streamlines from every subject are resampled to the same num-
ber of points. If the underlying anatomy of some subjects was altered due to, e.g.
disease or developmental changes, such information might be lost by resam-
pling to a fixed number of points. In this work, we propose to address the issue
of possible misalignment, which might be present even after resampling, by re-
aligning the representative streamline of each subject in this 1D space with a new
method, coined diffusion profile realignment (DPR). Experiments on synthetic
datasets show that DPR reduces the coefficient of variation for the mean diffu-
sivity, fractional anisotropy and apparent fiber density when compared to the un-
aligned case. Using 100 in vivo datasets from the human connectome project, we
simulated changes in mean diffusivity, fractional anisotropy and apparent fiber
density. Independent Student’s t-tests between these altered subjects and the
original subjects indicate that regional changes are identified after realignment
with the DPR algorithm, while preserving differences previously detected in the
unaligned case. This new correction strategy contributes to revealing effects of
interest which might be hidden by misalignment and has the potential to im-
prove the specificity in longitudinal population studies beyond the traditional
region of interest based analysis and along-tract analysis workflows.

Keywords: Diffusion profile realignment, Along-tract analysis, Tractometry, Tractogra-
phy, Diffusion MRI, White matter
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Chapter 4. Reducing variability in along-tract analysis

4.1 Introduction

Diffusion weighted magnetic resonance imaging (dMRI) is a noninvasive technique that
can be used to study microstructure in living tissues based on the displacement of water
molecules. Since neurological diseases (e.g. multiple sclerosis (MS) (Cercignani and Gan-
dini Wheeler-Kingshott, 2018), amyotrophic lateral sclerosis (ALS) (Haakma et al., 2017))
involve many processes that affect the density and properties of the underlying tissue, the
corresponding changes are reflected on scalar values extracted from dMRI (Bodini and Cic-
carelli, 2009). However, it remains challenging to pinpoint accurately the underlying cause
as many of these changes (e.g. axonal damage, demyelination) may be reflected similarly by
changes in measurements from dMRI (Beaulieu, 2002). Such changes could even be due to
acquisition artifacts or from the use of a different processing method during data analysis
(Jones and Cercignani, 2010), making dMRI sensitive, but not necessarily specific, to the
various mechanisms involved in those changes (O’Donnell and Pasternak, 2015). Accurate
characterization of the underlying processes affecting scalar metrics computed from dMRI
still remains an open question.

A successful application of dMRI is to reconstruct the structure of the underlying tis-
sues, a process known as tractography (see, e.g. Jeurissen et al. (2017) and Mori and Van
Zijl (2002) for a review). Tractography enables a virtual reconstruction of the white matter
bundles and pathways of the brain, which is central to preoperative neurosurgical planning
(Nimsky et al., 2016) and at the heart of connectomics (Hagmann et al., 2007; Sporns et
al., 2005). Over the last years, various analysis strategies have arisen to study scalar values
computed from dMRI models. Two popular schools of techniques consist of using anatom-
ical regions of interests (ROIs), either by manual or automatic delineation (Froeling et al.,
2016; Smith et al., 2006), or using spatial information additionally brought by tractog-
raphy to analyze scalar metrics along reconstructed bundles (Colby et al., 2012; Corouge
et al., 2006; Cousineau et al., 2017; Jones, Travis, et al., 2005; Yeatman et al., 2012). Both
approaches involve various user-defined settings and have their respective criticisms and
drawbacks; ROI based analysis requires accurate groupwise registration (Bach et al., 2014),
whereas tractography-based analysis needs to deal with false positives streamlines which can
also look anatomically plausible (Maier-Hein et al., 2017). One key point shared between
these methods is that they both require some form of correspondence between the studied
structure of interest for each subjects, either by spatial registration to align the delineated
ROIs (Froeling et al., 2016; Smith et al., 2006) or along the streamlines by resampling
to a common number of points (Colby et al., 2012; Yeatman et al., 2012). Tractography-
based approaches can analyze the voxels traversed by a specific white matter bundle in a
data driven way and reveal subtle local changes inside a bundle, while ROI based analysis
discards the 3D spatial information but reveal widespread changes in the bundle (O’Hanlon
et al., 2015). For tractography-based analysis, metrics are either averaged by using all points
forming a common bundle (Wakana et al., 2007) or collapsed as a representative pathway
of the bundle (Colby et al., 2012; Cousineau et al., 2017; Yeatman et al., 2012) to study
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changes in scalar values along its length. Once this per subject representative streamline has
been defined, it is used to index scalar values along the length of this pathway (O’Hanlon
et al., 2015; Szczepankiewicz et al., 2013). Recent applications include studying changes
in diffusion metrics due to Alzheimer’s disease (AD) (Jin et al., 2017), which helped to
uncover changes in mean diffusivity (MD) along the fornix for example. Studies in ALS
patients also identified a diminution in fractional anisotropy (FA) along the corticospinal
tract depending on the origin of the disease (Blain et al., 2011). Information from other
MRI weighting such as myelin water fraction maps derived from T2 relaxometry have also
been included to study changes due to MS (Dayan et al., 2016). As each subject respective
morphology is different (i.e. reconstructed bundles from different subjects vary in shape
and size) just as in ROIs based analysis, one needs to ensure correspondence between each
segment of the studied bundle for all subjects. This correspondence is usually achieved
by creating a new common space where all of the subjects representative streamlines are
resampled to a common number of points. As noted by Colby et al. (2012), resampling to
the same number of points makes the implicit assumption that the end points (and every
point in between) are in correspondence across each subject. Yeatman et al. (2012) also
mention that “it is important to recognize that the distal portions of the tract may not
be in register across subjects”, even though the resampling step creates a new 1D space
for point-by-point comparison. O’Donnell, Westin, et al. (2009) previously noticed the
potential issue introduced by misalignment between subjects mentioning that “improved
cross-subject alignment is of interest […] as the high-frequency variations seen in individ-
ual subjects […] are smoothed in the group average”. While many methods for registering
dMRI volumes or streamlines were developed (see, e.g. O’Donnell, Daducci, et al. (2017)
for a review), they do not directly address the issue of possible residual misalignment be-
tween the end points after extracting the representative streamlines of each subject. To
ensure an adequate comparison between subjects, one must make sure that each stream-
line corresponds to the same underlying anatomical location.

In the present work, which extends our preliminary work presented at the ISMRM
(St-Jean, Viergever, et al., 2016), we focus on the issue of possible misalignment between
the final representative streamlines before conducting statistical analysis. To prevent this
issue, we propose to realign the representative streamline of each subject while ensuring
that the distance between each point is preserved, by resampling to a larger number of
points than initially present. This strategy preserves the original 1D resolution of each
subject, allowing a groupwise realignment based on maximizing the overall similarity by
using the Fourier transform. After this realignment, points from individual streamlines
that are identified as outliers can be discarded, as they would not overlap with the rest of
the subjects. The representative, and now realigned, streamlines can be resampled to a lower
number of points such as approximately one unit voxel size to facilitate group comparison
and statistics (Colby et al., 2012). Fig. 4.1 shows an example of a typical workflow to
analyze dMRI datasets and shows how the proposed diffusion profile realignment (DPR)
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methodology can be used in preexisting pipelines.

Figure 4.1: Flowchart of current approaches and the proposed methodology. The diffusion profile
realignment inserts itself in existing along-tract analysis workflows (red box) by combining a different
resampling strategy with a realignment step. It is also possible to resample each streamlines to a
smaller number of points (red arrow) if desired.

4.2 Theory

Each subject’s representative streamline is a 3D object, but the scalar metrics extracted
along the tract can be viewed as a discrete 1D signal that may be non-stationary. In this
work, we consider the 1D scalar metric profile to be a discrete signal equally sampled at
each step of the tractography, which has a value of 0 outside the region delineated by the
bundle it represents. We now present a realignment technique for 1D signals based on
maximizing the cross-correlation function (CCF).

We can define the CCF using the fast Fourier transform (FFT) (Cooley and Tukey,
1965) as

CCF(𝑥, 𝑦) = ℱ−1(ℱ(𝑥) ⊙ ℱ(𝑦)∗), (4.1)
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where ℱ(x) and ℱ−1(x) is the Fourier transform of 𝑥 and its inverse, ∗ is the complex
conjugation and ⊙ the pointwise Hadamard product. The required shift to realign the
vectors is given at the maximum coordinate of the CCF. The CCF measures the similarity
between two vectors 𝑥 and 𝑦 assuming that the data is 1) stationary, 2) equally spaced
between all points and 3) normally distributed (Denman, 1975; Platt and Denman, 1975).
Stationarity can be achieved by fitting and subtracting a low degree polynomial from each
vector before computing the cross-correlation, see, e.g. Box et al. (2008) and Stoica and
Moses (2005) and references therein for more details. Equal spacing between each points
can be obtained by resampling the data. The normality assumption seems less of an issue
for large samples in practice (Platt and Denman, 1975). If the two vectors 𝑥 and 𝑦 have a
different amplitude, the cross-correlation can be normalized by subtracting the mean and
dividing by the standard deviation of each vector beforehand (Lewis, 1995). The shift
computed at the maximum of the CCF is an integer displacement that can be refined by
finding the maximum of the parabola around this point. Fig. 4.2 shows an example of the
cross-correlation for both the stationary and non stationary case on two vectors. The first
vector was randomly sampled from the standard normal distribution 𝒩(0, 1). The second
vector was generated from the first vector by changing the offset and amplitude and then
zero padding it at both ends to create an artificial displacement.
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A B C

D E F

Figure 4.2: A synthetic example of the CCF between two randomly generated vectors. The top
graphs showcase how the CCF spectrum can be used to find the displacement required to realign two
different vectors by finding its maximum. A) Two vectors which are displaced with respect to each
other, where vector B has a different amplitude from vector A. B) The cross-correlation spectrum,
where the peak indicates the required shift to maximize the overlap between both vectors. C) The
vectors after realignment, which is the exact displacement that had been applied. On the bottom
graphs, removing the linear trend and normalizing the vectors satisfies the assumption of stationarity
required by Eq. (4.1) and allows recovering the correct shift. D) Two unaligned vectors of different
amplitude where vector B is also non stationary. E) The cross-correlation spectrum with detrending
and normalization (in blue) and without these steps (in red). The detrended version recovers the
correct shift, while the original CCF exhibits a variation in amplitude which hides the correct peak as
a local (red box), but not global, maxima due to non stationarity. F) The vectors after realignment
with the shift as computed by the detrended CCF. Both vectors are now realigned after shifting vector
B with the shift computed in E).

4.3 Materials and methods

To evaluate the proposed realignment procedure, we 1) generated synthetic datasets com-
prised of crossing bundles and 2) compared realignment on in vivo datasets with an altered
version of their diffusion metrics. We now detail the various steps needed to perform an
along-tract analysis and how the proposed realignment algorithm can be applied before
performing a statistical analysis between subjects.
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4.3.1 Resampling strategies for comparison between subjects

Various resampling strategies have been discussed in previous along-tract frameworks, with
a common idea advocating resampling all representative streamlines to the same number of
points. In Cousineau et al. (2017), the authors used a fixed number of points by resampling
all of the studied bundles to 20 points while Yeatman et al. (2012) instead used 100 points.
Colby et al. (2012) opted for resampling each bundle based on their average group length,
ensuring that approximately one point per voxel was present. In this representation, each
point of the streamlines is considered to correspond to the same anatomical location across
subjects and is therefore blind to the intrinsic variance in shape or length between subjects.
As each representative streamline most likely had a different length initially, the distance
in millimeters between each sampled coordinate will be different for each subject. If the
underlying anatomy of some subjects was altered due to, e.g. disease or developmental
changes, such information might be lost by resampling to a fixed number of points as a
first step. This can be prevented by ensuring that the new sampling resolution is at least
equal or larger than the initial resolution used during tractography.

As a bundle is comprised of many individual streamlines, they are usually collapsed to a
single representative pathway to facilitate subsequent analysis. This representative stream-
line is therefore an aggregation of many streamlines of various length and can be obtained
either by averaging (Colby et al., 2012; Yeatman et al., 2012) or by finding representative
clusters (Cousineau et al., 2017). Other assignment strategies towards a single represen-
tative pathway have been discussed in (Corouge et al., 2006; O’Donnell, Westin, et al.,
2009). To ensure correspondence during this aggregation step, individual streamlines are
usually resampled to a common number of points for all subjects. While this resampling is
needed to obtain the representative streamline, it may also reduces the sampling resolution
from the original streamlines given by the step size used for tractography if not enough
points are kept. The representative streamline of each subject may also have a different
orientation altogether and therefore might need to be flipped, ensuring that they share a
common coordinate system (Colby et al., 2012).

In the present work, we instead advocate a novel two-step resampling strategy that
builds upon the classical resampling strategy. After extracting the representative stream-
lines (𝑆1, … , 𝑆𝑛) for 𝑖 = 1, … , 𝑛 of each subject, each representative streamline 𝑆𝑖 is defined
by its number of points 𝑁𝑖 and the distance between its points 𝛿𝑖. All streamlines are first
resampled to 𝑀𝑖 = 𝑁𝑖 × 𝛿𝑖/𝛿min points, ensuring an equal distance between each point
𝛿min = min(𝛿1, … , 𝛿𝑛). In the end, the streamlines still have a different number of points
𝑀𝑖 ≥ min(𝑁1, … , 𝑁𝑛) and points at the same coordinates across subjects do not implicitly
assume to represent the same anatomical location. However, the distance 𝛿𝑖 between each
point 𝑀𝑖 is now constant across subjects. While this idea may seem counterintuitive, the
motivation behind this choice is due to Eq. (4.1), which relies on the FFT, and as such,
needs equally sampled vectors and benefits from a high sampling resolution.

After the displacement has been applied, one can use the classical resampling strategies
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presented by other authors, therefore making our approach fully compatible with already
existing analysis techniques. We opted to use the methodology of Colby et al. (2012) since
more than one point per unit voxel size would not carry additional information from the
original data. This also alleviates further complications arising from multiple comparisons
(Benjamini and Hochberg, 1995) for the subsequent statistical analysis one seeks to apply
afterwards. Fig. 4.3 illustrates schematically the classical resampling versus our novel two-
step resampling strategy.

A
B

C

Figure 4.3: An example of the classical and proposed resampling strategies on three representative
streamlines. In A), three representative streamlines which have different shapes and lengths with
their start (1A, 1B and 1C) and end points (2A, 2B and 2C) at different spatial locations. In B), the
classical strategy of resampling to the same number of points (circles) introduces a common space
to easily compare them. However, the end points of the underlying anatomies are artificially aligned
when compared to their original representation and each point is at a different distance (black lines).
In C), the proposed resampling strategy ensures that the distance 𝛿min (black lines) between every
point is constant. Even though each streamline length is different as indicated by the location of
the end points, they can now be realigned to identify the common anatomical positions between all
subjects.

4.3.2 Proposed algorithm for diffusion profile realignment

DPR works in three steps once the 1D profiles have been resampled to an equal spacing as
presented in Section 4.3.1. We also ensure stationarity of the data by fitting and subtracting
a polynomial of degree one (i.e. a straight line) to each subject. It is important to mention
here that this step is only to satisfy the stationarity assumption of Eq. (4.1) and does not
modify the extracted diffusion profiles afterwards.

Firstly, a matrix of displacement is computed between every pairs of subjects and sub-
sequently refined with parabola fitting as previously defined in Section 4.2. A maximum
possible displacement in mm is then chosen. From the displacement matrix, the subject
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realigning the largest number of streamlines inside this maximum displacement is chosen
automatically as the template subject. As Eq. (4.1) is symmetric, realigning subject 𝐴 to
𝐵 or subject 𝐵 to 𝐴 will have the same outcome in practice.

A B C

D

E

Figure 4.4: An example of a cross-correlation spectra (left) and finding a new template to realign
outliers (right) using the HCP datasets. On the left, a threshold of 15% of the total streamline
length is selected as the maximum allowed displacement (dashed vertical lines). A) A streamline
with the global maximum of the CCF inside the chosen threshold. The maximum indicates the shift
needed to realign it to the template. B) A streamline with a local maximum, but not the global
maximum, of the CCF inside the chosen threshold. In this case, the two streamlines would not be
realigned together as only small shifts should be needed for realignment. On the right, an example of
realigning an outlier subject (in blue) to the original template (in green) via the closest matching new
template (in red) using the AFD metric. The black dashed bars indicate the region where all three
streamlines fully overlap and the red dashed bars shows the maximum allowed displacement of 15%.
C) The three streamlines before realignment. D) Realigning the blue streamline with the template
(in green) as given by the maximum of the CCF results in an outlier as in case B). E) To circumvent
the issue, a new template (in red) is found amongst the non-outlier subjects which minimizes the
total displacement with the original template. The blue streamline is therefore not an outlier anymore
as it now lies inside the displacement threshold as in case A).

Secondly, all outliers with a displacement larger than the chosen threshold from the
first step are realigned with the help of a new per-streamline template. For each outlier,
a new template is selected amongst the remaining non-outlier subjects, which minimizes
the total displacement between the original template from the first step and the current
outlier. If the new minimum displacement is inside the chosen threshold, the subject that
was previously an outlier is now registered through this new template. If no new template
providing realignment inside the threshold can be found, then this subject is declared as an
outlier and is not realigned at all. Fig. 4.4 shows the spectra of a normal subject and of an
outlier for spectra computed with Eq. (4.1) from the HCP datasets. Even if the optimum
displacement lies outside the chosen threshold, the outlier can still be realigned by finding
a new template subject.

Finally, after realigning all the admissible streamlines to the template, there will be a
different number of overlapping subjects for each coordinate. Just as ROIs were previously
used to truncate the bundles’ end points (recall Fig. 4.6), the resulting aligned streamlines
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should be truncated once again to reduce their uncertainty since not all coordinates have the
same number of overlapping streamlines anymore. A pseudocode version of the proposed
algorithm is outlined in Section 4.7. Our reference implementation is freely available as a
standalone1 (St-Jean, 2019), and will also be included in ExploreDTI (Leemans, Jeurissen,
et al., 2009). We also make available the synthetic datasets and metrics extracted along the
representative streamlines of the HCP datasets that are used in this manuscript (St-Jean,
Chamberland, et al., 2018).

4.3.3 Datasets and acquisition parameters

Synthetic datasets A synthetic phantom consisting of 3 straight bundles crossing in the
center at 60 degrees with a voxel size of 2 mm was created with phantomas (Caruyer et al.,
2014). Each bundle has some partial voluming present on the outer edge to mimic the
white matter / gray matter interface. We simulated 64 diffusion weighted images (DWIs)
using gradient directions uniformly distributed on a half sphere and one b = 0 s/mm2 image
with a signal-to-noise ratio (SNR) of 10, 20 and 30 with uniformly distributed Rician noise
and a noiseless reference volume. Two distinct diffusion weightings of b = 1000 s/mm2 and
b = 3000 s/mm2 were used, producing a total of 8 different synthetic datasets. The SNR
was defined as SNR = 𝑆0/𝜎, where 𝑆0 is the non-diffusion weighted signal and 𝜎 is the
Gaussian noise standard deviation.

HCP datasets 100 subjects (50 males, 50 females) from the in vivo Human Connectome
Project (HCP) database (Van Essen et al., 2012) aged between 26 and 30 years old were se-
lected. All 18 b = 0 s/mm2 volumes were kept along with the 90 volumes at b = 3000 s/mm2

in order to maximize the angular resolution (Tournier et al., 2013). The acquisition param-
eters were a voxel size of 1.25 mm isotropic, a gradient strength of 100 mT/m, a multiband
acceleration factor of 3 and TR / TE = 5520 ms / 89.5 ms. We used the minimally prepro-
cessed datasets which are already corrected for subject motion, EPI distortions and eddy
currents induced distortions (Van Essen et al., 2012).

4.3.4 Local model reconstruction and fiber tractography

We used the constrained spherical deconvolution (CSD) algorithm (Tournier et al., 2007)
with a recursive calibration of the response function (C. M. Tax et al., 2014) and spherical
harmonics of order 8 to estimate the fiber orientation distribution functions (fODFs). We
also computed the diffusion tensors using the REKINDLE approach (C. M. W. Tax et al.,
2015) to exclude potential outliers from the data. We subsequently computed the apparent
fiber density (AFD) maps (Dell’Acqua et al., 2013; Raffelt et al., 2012) from the fODFs
and the FA and MD maps from the diffusion tensors (Basser and Pierpaoli, 1996) in all
experiments. Whole-brain deterministic tractography was performed using the fODFs

1https://github.com/samuelstjean/dpr
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with ExploreDTI (Leemans, Jeurissen, et al., 2009) with a step size of 0.5 mm, a fODFs
threshold of 0.1 and an FA threshold of 0.2 for all datasets. The angle threshold, seeding
grid resolution and streamlines length threshold used during tractography were different
for the synthetic and HCP datasets as detailed below.

Tractography parameters for the synthetic datasets Tractography was performed with
an angle threshold of 30 degrees and a seeding grid resolution of 0.5 mm on each axis to
ensure a dense coverage of each bundle. Only the streamlines with a length of at least 10
mm and up to 150 mm were kept to prevent the presence of spurious streamlines. Two
ROIs were manually drawn on one bundle to select only straight streamlines belonging to
this bundle as shown in Fig. 4.5. The streamlines were kept to their full extent, including
some small variations near the end points due to partial voluming, which ensures that the
intersection of the three bundles is approximately at the center. To mimic similar represen-
tative streamlines extracted from various subjects, 150 streamlines were randomly selected
and cut randomly from 1% up to 10% of their total length at both end points. Two sets of
representative streamlines were created using classical resampling to the same number of
points and our novel two-step resampling strategy, which is detailed in Section 4.3.1. In
the first case, all streamlines were resampled to 50 points, which is approximately one unit
point size per voxel. As each synthetic representative streamline had a different length after
truncation, resampling to the same number of points allows a direct comparison between
each coordinate, even if they do not match the same “anatomical” location by design of the
experiment. No resampling was needed to simulate our proposed resampling strategy, as
the distance between each point is already equal for this particular synthetic example.

Tractography parameters for theHCP datasets Whole-brain tractography was performed
with an angle threshold of 45 degrees and a seeding grid resolution of 2 mm on each axis.
Only the streamlines with a length of at least 10 mm and up to 300 mm were kept to limit
the presence of spurious streamlines. ROIs were manually drawn to segment the left and
right arcuate fasciculus (AF) and the left and right corticospinal tract (CST) on an exem-
plar subject (Wakana et al., 2007) as shown in Fig. 4.5. This exemplar subject FA map was
used as a template and subsequently non linearly registered to each other subject respective
FA map using Elastix (Klein et al., 2010). The obtained transformation was then applied
on each ROIs drawn on the exemplar subject defining the four bundles, therefore warping
the original ROIs unto each subject’s respective diffusion space as in Lebel et al. (2008).
Only the segments between the ROIs were kept to only retain the straight sections and to
remove spurious end points e.g. before the fanning in the CST. An alternative approach
could be to extract the bundles automatically using a parcellation of the white matter ob-
tained from each subject’s T1-weighted MR image (Cousineau et al., 2017; Wassermann
et al., 2016). This would capture the full extent of the bundle instead of only keeping the
sections between ROIs as done in the present work, but at the expense of possibly increas-
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ing variability. Such an approach may be useful if important anatomical information is
contained in these end regions.

A B C

D
E

Figure 4.5: The synthetic bundles dataset and the locations of the ROIs used to segment some of
the in vivo bundles on the exemplar subject with their automatically extracted counterpart for three
subjects. In the top row, A) streamlines in a straight bundle of the synthetic datasets. Note that the
streamlines are not truncated at the end points, but rather cover the full length of the red bundle so
that they cross exactly at the center. The two inclusions (in green) and one exclusion (in red) ROIs
segmenting B) the right AF on the exemplar subject and C) three automatically extracted right AF
drawn in the exemplar subject native space (shown in green, cyan and magenta). On the bottom
row, D) the left CST on the exemplar subject and E) three automatically extracted left CST bundles
(shown in green, cyan and magenta) drawn in the exemplar subject native space. Note that each
subject’s bundle would correspond roughly to the same anatomical location in its own native space.

Extracting representative streamlines for the HCP datasets To extract the representa-
tive streamline of each subject, all streamlines forming a given bundle were linearly re-
sampled to the same number of points, chosen as the number of points of the top 5%
longest streamlines to reduce the effect of possible outliers. This choice is robust to pos-
sible outliers which might be longer (or much smaller) than the rest of the streamlines
due to spurious results from tractography while also keeping a high sampling resolution, a
desirable property for Eq. (4.1).
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In the present work, the mean streamline per bundle was extracted and finally resampled
in two different ways: 1) using a fixed number of points for all subjects and 2) ensuring an
equal distance between each point. For the classical resampling strategy, we resampled all
subjects to 70 points for the arcuate fasciculi and 105 points for the corticospinal tracts. The
second resampling strategy ensured that the distance 𝛿min (in mm) between each point is
the same for all subjects. This also means that the representative streamlines of each subject
do not have the same number of points and can not be compared directly at this stage when
using this resampling strategy. Fig. 4.6 shows an example of selecting a representative
segment between two ROIs as would be done for the uncinate fasciculus.

A

B C

Figure 4.6: An example of along-tract analysis. A) The uncinate fasciculus is first segmented from a
whole-brain tractography on an exemplar subject. B) The two ROIs (shown in red) that were defined
to segment the uncinate fasciculus. Warping these ROIs to each subject provides an automatic
dissection of the bundle. C) Only the portion of the mean streamline (shown in white) between the
two ROIs is discretized (shown by the red dots), which allows mapping scalar metrics along the bundle
itself.

4.3.5 Extracting diffusion metrics for along-tract analysis

Once every representative streamline has been obtained, it can be used to collect diffusion
derived metrics along the 3D pathway indexing a volume of interest. We collected the
values of MD, FA and AFD for each subject along the streamline trajectory as in Colby
et al. (2012). The resulting 1D segment is a vector of values varying along the length
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of the representative streamline. This single representative pathway can now be realigned
in a pointwise fashion to ensure correspondence between subjects before moving on to
statistical analysis.

4.3.6 Applying the diffusion profile realignment on representative streamlines

Realignment of uniformly resampled and variable length streamlines To evaluate the
reduction in variability brought by our proposed DPR algorithm, we estimated the coeffi-
cient of variation (CV) at each coordinate along the streamlines before and after realignment
using both resampling strategies. The CV, defined as 𝐶𝑉 = 𝜎/𝜇 with 𝜎 the standard devia-
tion and 𝜇 the mean of each metric, is a unitless standardized measure of dispersion where
a lower CV indicates a lower standard deviation around the mean value. For all experi-
ments, we used a maximum displacement threshold of 15% to find the subject serving as
a template during realignment. We computed the CV before and after the realignment of
the representative streamlines using both resampling strategies. To compare the variability
due to truncation of the end points, only the segments where 1% (at least one stream-
line present), 50%, 75% and 100% (all streamlines are fully overlapping) of the realigned
streamlines were kept for computing the CV. In the synthetic datasets experiments, we
weighted the CV by the number of points at each coordinate to account for the different
number of points of the unaligned bundle. For experiments with the HCP datasets, we
instead did a final resampling to the same number of points (if appropriate) after the re-
alignment as previously used for the classical resampling strategy in order to ensure a fair
comparison between both approaches.

Simulating abnormal values of diffusion metrics in HCP subjects An example appli-
cation of the along-tract analysis framework could be to study neurological changes in
a given population. These changes would presumably affect some specific white matter
bundles and their underlying scalar values extracted from dMRI. Both the location and
magnitude of these changes could reveal an effect of interest that might be hidden at first
due to potential misalignment between subjects. To simulate a change in scalar metrics,
50 subjects were chosen randomly and had their representative streamlines profile modi-
fied while the other 50 subjects were left untouched. These 50 modified subjects are now
classified as the “altered” subjects and the other untouched 50 subjects as the “controls”
subjects in the subsequent experiments. For each altered subject, a location covering two
times the affected length on both sides was chosen at random starting from the middle and
the metrics were modified at this location. Two separate set of experiments were performed
where the changes in metric was at first +10% and then −10% of its original value over
15% of the length. An additional set of experiments simulating highly focused damage of
±25% and ±50% of the metrics over 5% or 1% of the bundle length was performed. For
the three cases, the randomly chosen location was at a position from 20% to 80%, 40%
to 60% and 48% to 52% of the bundle length. This process is repeated for each metric
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and each bundle, creating a different set of randomly modified subjects every time. The
representative streamlines were finally realigned separately per group. As the control and
altered subjects likely have different 1D profiles, realigning them separately makes it pos-
sible to select the best template for each group by itself. This strategy implicitly assumes
that the neurological changes induce a similar increase or decrease in the diffusion metrics
of each subject and that after realignment, each anatomical location is in correspondence
between both groups. Correspondence between groups is also implied in classical along-
tract analysis when resampling to the same number of points for comparison. Limiting the
maximum displacement allowed also ensures that information carried by the diffusion met-
rics stays locally around the same position. The correspondence after separate realignment
is assumed by resampling to the same number of points as the final step before analysis. In
a clinical study setting, this could reflect neurological changes as induced by, e.g. a neu-
rodegenerative disease or aging. The idea is to induce some changes in the extracted scalar
values only, without modifying the underlying raw data or performing tractography and
representative streamlines extraction once again. This choice of working in the extracted
metric space only is to assess the changes in the metrics and realignment, in opposition to
changes affecting the raw data itself. As the tractography process and extracted streamlines
would most likely be slightly different due to the inherent challenges in reproducing trac-
tography (Maier-Hein et al., 2017), the subsequent interpretation of the results could be
confounded if tractography would be done anew.

Statistical tests between HCP subjects We conducted a Student’s t-test for independent
samples between the controls and altered HCP subjects with a correction for the false
discovery rate (FDR) of 𝛼 = 0.05 (Benjamini and Hochberg, 1995) for one metric on each
bundle. The t-test was realized on the datasets before and after the realignment of the
representative streamlines metrics. However, the FDR correction only ensures an upper
bound on the occurrence of false effects and do not indicate their location nor how many
are present.

4.4 Results

4.4.1 Simulations with the synthetic datasets

We now present numerical simulations involving the synthetic datasets presented in Sec-
tion 4.3.3, comparing the two resampling strategies from Section 4.3.1 before applying the
DPR algorithm. Fig. 4.7 shows the reduced CV for the realignment of the AFD metric on
the SNR 20 dataset at b = 3000 s/mm2 when compared to their non realigned counterpart.
After realignment, the standard deviation at each coordinate is now generally lower, espe-
cially in the center portion where the three bundles are crossing. In the case of resampling
to an equal distance 𝛿min, a few streamlines are overlapping at the end points, which might
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reduce statistical power for these regions during subsequent analyses. As previously men-
tioned in Section 4.3.2, portions where only a few streamlines are overlapping should be
truncated accordingly to prevent these degenerate cases. Fig. 4.8 shows summary boxplots
of the CV in addition to the mean CV across all coordinates for the synthetic datasets for
the MD, FA and AFD. In all cases, realignment provides a lower CV than the non realigned
synthetic streamlines.

4.4.2 Realignment of the in vivo HCP datasets

Realignment of the arcuate fasciculi and corticospinal tracts To quantify the improve-
ments brought by the DPR algorithm for the in vivo datasets, we realigned the represen-
tative streamlines extracted from the 100 HCP datasets. Fig. 4.9 shows the final outcome
with the two previously discussed pipelines for producing along-tract averaged profiles: re-
sampling to the same number of points as is conventionally done and after realignment
with the DPR algorithm. For the realigned case, we kept only the segments where at least
75% of the subjects are overlapping and finally resampled all subjects to the same number of
points. This last resampling step could be considered optional and is used to allow an easier
visual comparison between the unaligned and realigned group profiles. While the overall
shape of each profile is similar between the unaligned and realigned version, the end points
and location of salient features are slightly different due to the realignment and the trunca-
tion threshold we used. As the maximum displacement threshold dictates which subject is
used as a template for the realignment, average group profiles using a maximum displace-
ment threshold of 5, 10 and 20% are shown in the supplementary materials Section 4.8.1.
To assess the effect of truncation on variance near the end points, we computed the CV
for each metric at various truncation thresholds and for the unaligned metrics. Fig. 4.10
shows the CV for the HCP datasets when the bundles are first resampled to the same
number of points and after realignment (in brown). In all cases, the CV is approximately
equal or lower after realignment with the DPR algorithm than when the representative
streamlines are unaligned and resampled to the same number of points. We also show the
CV in the unaligned case where all streamlines have an equal distance 𝛿min between points
and for four truncation thresholds after applying the DPR algorithm (no truncation, 50%,
75% and 100% of overlap). In this particular case, the resampled and realigned bundles
(light brown) and the realigned bundles with no truncation (green) are mostly equivalent
as they are resampled to the same final number of points after realignment for comparison
purposes. The main tendency shows a lower mean CV after realignment when compared
to the non realigned cases. The CV values are also generally lower with increasing trun-
cation thresholds as the number of overlapping points per coordinates is also increasing,
contributing to a lower standard deviation of each metric.

Robustness of the shapes of averaged profiles towards different metrics When perform-
ing an along-tract analysis, tractography plays a key role as a spatial indexation method for
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extracting the 1D metric profiles along the streamline. Given a particular subject repre-
sentative streamline, the various scalar metrics that can be extracted each have their own
distinct 1D profile along the streamline. In order to assess the robustness of our proposed
DPR algorithm, we investigated whether for a given metric and template the resulting aver-
age group profile would be similar using the displacement computed from the other metrics.
As the displacement depends on the spectrum of each 1D profile, each metric may use a
different template and apply a different displacement for each subject. This may ultimately
lead to a different group average profile due to our algorithm automatically choosing the
template amongst the subjects. However, the relative displacement due to a change of tem-
plate (and hence the resulting group average 1D profile) may be unaffected by this choice,
leading to a similar group average profile. Fig. 4.11 shows the resulting average group pro-
files for each metric when using the original realignment and the realignment that would
be applied from the two other remaining metrics with a maximum displacement threshold
of 15%. As the AF is slowly varying in terms of diffusion metrics along its extracted path,
the realignment of the MD metric is similar even when using the displacement computed
from the FA or AFD metric. On the other hand, applying the realignment given by the
MD to the FA and AFD profiles leads to different optimal realignments and a change in
their overall profile. For the CST, as the representative streamline crosses other anatomical
bundles along its path, the 1D profiles have more variation along coordinates than in the
AF case. This is mostly notable in the MD metric profile, which is now similarly realigned
when using either the FA or AFD. Due to these anatomical “landmarks”, the displacement
given by the MD also yields similar profiles when applied to the FA and AFD metrics.
Results for maximum displacement thresholds of 5, 10 and 20% produced similar trends,
which are shown in the supplementary materials Section 4.8.2.

Realignment with simulated diffusion abnormalities in HCP datasets We first focus
on the new strategy of resampling the representative streamlines, while ensuring that the
distance between each point 𝛿min is the same. As one can always resample to a common
number of points after realignment, this prevents a reduced sampling resolution when using
Eq. (4.1). Automatically selecting a template from the subjects themselves allows the DPR
algorithm to be as flexible as possible. The changes in scalar metrics (e.g. introduced by
local alteration of tissue microstructure following disease) might not be obviously identified
on the group average for the unaligned streamlines case, but the variations in shape of the
realigned group average may be uncovered by selecting a new template. Fig. 4.12 shows four
examples of the unaligned and realigned profiles of the scalar metrics for the datasets with
and without simulated diffusion abnormalities for each white matter fiber bundle. Note how
the original and altered unaligned streamlines have a similar profile for both metrics at first,
but the realigned altered streamlines now have a different profile which was uncovered by
realignment with the DPR algorithm (see the red boxes in Fig. 4.12). This is especially
prevalent in the case of the MD metric where the unaligned profiles are similar for the
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control and altered subject data, while realignment uncovers the higher MD values that
were originally simulated.

Statistical hypothesis testing We now look at uncovering groupwise differences between
the control and altered HCP subjects over the affected regions. Fig. 4.13 shows the results
of the unpaired t-test for the HCP datasets before and after realignment for the A) AF left
with the MD metric, B) AF right with the FA metric, C) CST left with the FA metric and
D) CST right with the AFD metric, as previously shown in Fig. 4.12. All of the regions
uncovered before using realignment are also identified as statistically significant at the level
of p-value < 0.05 after realignment. This indicates that findings for the unaligned case are
preserved when using our proposed algorithm, with the addition of new affected regions,
which might have been averaged out due to misalignment in the first place. For example,
the left AF and left CST showcase an affected portion that is statistically significant only
after realignment. However, using a lower statistical threshold or a higher level 𝛼 for
the FDR might reveal additional affected regions at the cost of introducing potential false
positives. Fig. 4.14 shows a second set of experiments on the four bundles realized with
large alterations of the metrics which are spatially focused e.g. in the presence of tumors.
Specifically, alterations in the metrics of 25% or 50% were induced over 1% or 5% of
each bundle length and each group subsequently realigned with DPR. Unpaired t-test
before and after realignment are conducted between the two groups at each location as
in Fig. 4.13. Almost all affected regions are identified before and after realignment when
the affected length is of 5%. For the CST left, the affected region is only identified after
realignment when the alteration is of 25%. When only 1% of the bundle length is affected,
no changes are identified before realignment, but are uncovered after realignment with the
DPR algorithm in all cases. Results obtained with maximum displacement thresholds of
5%, 10% and 100% are shown in the supplementary materials Section 4.8.3.

80



4.4. Results
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Figure 4.7: Realignment of representative streamlines resampled to 50 points (left column) and
with an equal distance 𝛿min (right column) for the AFD case at SNR 20 and b = 3000 s/mm2. Each
individual streamline is plotted in light gray, with the mean value in color and the standard deviation as
the shaded area. The black vertical bars indicate the location of the original, non realigned streamlines.
The colored vertical bars indicate the number of overlapping streamlines, ranging from at least 1 (all
subjects, purple lines) to all of them (100%, red lines). Panels A) and B) show the streamlines before
realignment. Note how individual streamlines are rather dispersed around the mean. Panels C) and
D) show the streamlines after realignment, with the mean value being closer to all of the subjects
and a smaller standard deviation than in panels A) and B). However, due to the realignment, the end
points have less subjects contributing to the mean value and should be truncated according to the
number of overlapping subjects. Panels E) and F) show the coefficient of variation (CV, where lower
is better) for each point, which is in general lower or equal than the non realigned version in both
cases. Note how the largest reduction in CV is in the crossing region, where the standard deviation
is approximately three times smaller in the realigned case than for the unaligned case.
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Figure 4.8: Boxplots of the CV for each point weighted by the number of overlapping subjects, for
the MD (left), FA (center) and AFD (right) metrics and their respective mean value (in orange). The
top row shows results for b = 1000 s/mm2 on the synthetics datasets at SNR 10, 20, 30 and in the
noiseless case while the bottom row shows results for b = 3000 s/mm2. In all cases, the realigned
metrics (for any truncation percentage) have a lower or equal CV on average than the non realigned
metrics (in blue). The FA and AFD metrics have a CV in the realigned case which is on average
approximately two times smaller than the non realigned case across all SNRs and both b-values. This
gain is smaller for the MD, which might be due to the relative homogeneity of the MD values.
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Figure 4.9: Along-tract averaged profiles (and standard deviation as the shaded area) of the unaligned
(blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling to the
same number of points. Each row shows the profile for one diffusion metric (MD, FA and AFD) while
each column shows one of the studied bundles (AF left/right from anterior (coordinate 0) to posterior
and CST left/right from inferior (coordinate 0) to superior). After realignment and truncation, the
profiles are slightly different from their unaligned version at the end points while the center profile is
similar. This is likely due to the misalignment mostly affecting the initial end points which are defined
by the original truncation from the ROIs.
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Figure 4.10: Boxplots of the CV for each point weighted by the number of overlapping subjects, for
the MD (left), FA (center) and AFD (right) metrics and their respective mean value (in orange) for
the four studied bundles. Similar to the synthetic datasets experiments, the in vivo datasets have a
lower CV after realignment (green, red, purple and yellow boxplots) than when they are unaligned
(brown boxplots). Even if the representative streamlines are truncated to the shortest number of
points (yellow boxplot) or are resampled to the same length (light brown boxplot), the CV is smaller
in the realigned cases than in the unaligned cases (brown and blue boxplots respectively). The gain
in CV is once again smaller for the MD but larger for the FA and AFD in favor of the realigned cases,
which is in line with the synthetic experiments.
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Figure 4.11: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric
(rows). The metrics were truncated to 75% of overlap after realignment with a final resampling to
the same number of points. On each row, the along-tract profile after realignment is shown for a
given metric (MD on the first row, FA on the second row and AFD on the third row) using the
displacement computed by the MD (blue), FA (green) and AFD (red). The AF are displayed from
anterior (coordinate 0) to posterior and the CST from inferior (coordinate 0) to superior.
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A B

C D

Figure 4.12: Comparisons between the unaligned and realigned profiles for the HCP datasets without
(control column) and with (altered column) simulated diffusion alterations in the white matter fiber
bundles. A different bundle for a specific metric is shown in each subfigure: A) AF left for the
MD, B) AF right for the FA, C) CST left for the FA and D) CST right for the AFD. The AF
are displayed from anterior (coordinate 0) to posterior and the CST from inferior (coordinate 0) to
superior. Each subject representative streamline is rendered transparently and the group average
representative streamline is represented by the solid line. The black bars indicate where at least 75%
of the subjects are overlapping. Some key visual differences (red boxes) are hidden by misalignment
between the control and altered subject data when they are unaligned, while realignment helps to
uncover those hidden degeneracies. Note that the red boxes in the subgraphs have the same size
and are aligned for easier visual comparison. The most striking example is in A) where the change
in MD is easier to see after realignment as the control subjects are keeping their original shape while
the altered datasets exhibit a drop in their scalar value around the same region. The unaligned group
average streamline however makes this difference harder to uncover.
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C D

Figure 4.13: Unpaired t-test corrected for false discovery rate (FDR) at 𝛼 = 0.05 overlaid on the
exemplar subject bundle for the same cases as in Fig. 4.12. On the left, fiber trajectories of the exem-
plar subject (in gray) and truncated portions of these pathways between the ROIs (in blue) expressed
in world coordinates A) before realignment and C) after realignment with the DPR algorithm. The
p-values at locations deemed statistically significant in the present work (𝑝 < 0.05) are overlaid on the
average streamline (in green). On the right, the p-values on a log scale after FDR correction along
the average streamlines B) before realignment and D) after realignment with the DPR algorithm, but
expressed as along-tract 1D point coordinates. The horizontal black bar is located at p-value = 0.05.
In the realigned data case, the p-values are lower in the significant regions (corticospinal tract right)
or even show affected regions which are not detected when the data is unaligned (arcuate fasciculi
and corticospinal tract left). The most prominent case is for the left arcuate fasciculus, where the
affected portion is not identified in the unaligned case (for our chosen significance threshold of 0.05),
but has a corrected p-value of approximately 10−5 after realignment.
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Focused alterations before and after realignment
A B

C D

Figure 4.14: Unpaired t-test (FDR corrected at 𝛼 = 0.05) with focused alterations of the metrics
for each bundle of A) 25% over 1% of the length, B) 50% over 1% of the length, C) 25% over 5%
of the length and D) 50% over 5% of the length. The AF left/right are represented from anterior
(coordinate 0) to posterior and the CST left/right from inferior (coordinate 0) to superior. The p-
values are on a log scale along the average streamline before realignment (dashed red lines) and after
realignment (solid blue lines) with the DPR algorithm. The horizontal dashed black lines indicate
p-value = 0.05. When alterations cover 1% of the length, the affected profiles are identified only
after realignment. At 5% of the length, the uncovered regions after realignment are concentrated
around smaller sections than their counterpart before realignment.
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4.5 Discussion

4.5.1 Reducing variability along bundles

Using simulations, we have shown how residual misalignment may hide the expected av-
erage profile of an along-tract analysis. Fig. 4.7 shows this effect directly as the group
mean profile from a set of streamlines only roughly corresponds to their individual, but in
truth identical, shape as their spatial location differs due to small differences in their length.
Realignment not only restores the expected group profile, but also reduces the pointwise
variability of the metrics as the unequal streamlines are now aligned as reflected by the lower
overall CV. Each individual subject is therefore participating to the group average instead
of being spread out and biasing the estimated mean scalar value of the overall bundle in
the crossing region. This is also true if the streamlines are first resampled to the same
number of points. In this case, the variance at the end points is larger, possibly due to a
loss in spectral resolution caused by resampling to a lower number of points than originally
present. Resampling early in the along-tract analysis pipeline may not only inadvertently
hide information for the realignment, but also hamper statistical testing by reducing the
spatial specificity of the data (O’Donnell, Westin, et al., 2009).

For the realignment of the in vivo HCP datasets, Fig. 4.9 shows that realignment al-
ters the group profile at the end points while preserving the overall shape and the central
portion of the bundle. This leads to a reduction of the CV, likely due to the reduction in
variance at the end points while the overall mean profile is preserved as shown in Fig. 4.10.
As the realigned end points will also have less data from different subjects present at each
coordinate, subsequent truncation further reduces the CV once again. The change of shape
after realignment is possibly due to the difference in length between each subject and the
subsequent mapping to their 1D metric profile. This 1D space hides the spatial 3D coor-
dinates misalignment that may be present between subjects. However, this misalignment
can still be mitigated afterwards. Even if the representative streamlines are shifted as a
whole with the realignment, preservation of the overall shape and center portion might
indicate that only the end points were dissimilar. The lower end point variance effect is
also present when using the classical resampling strategy and subsequently realigning the
representative streamlines. The misalignment at the end points between subjects is due
in part to the truncation effect of the ROIs and to the nature of tractography itself and
its many user-defined settings (Chamberland, Whittingstall, et al., 2014). The use of ter-
mination criteria (e.g. FA threshold, white matter mask, maximum curvature) or seeding
strategy (e.g. white matter versus cortex seeding) (Girard et al., 2014) may prematurely
terminate tractography in the middle of a white matter bundle, contributing in producing
shorter streamlines which end before fully reaching the gray matter (Maier-Hein et al.,
2017). New algorithms and seeding strategies are developed to enhance tractography end
points near the cortex (St-Onge et al., 2018) and could help to reduce this truncation effect.
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4.5.2 Effect of exchanging metrics for realignment

We have shown in Fig. 4.11 the effect of applying the realignment computed from dif-
ferent metrics on the mean group tract profile. From these results, we can observe the
different displacement values obtained from the dMRI metrics, even though the represen-
tative streamlines arise from the same anatomical location. This is due to the fact that our
framework is fully driven by the 1D profiles of the studied metric, which all have different
shapes and features, leading to slightly different realignment outcome depending on the
bundle and the metric that is used. As the FA and AFD profiles are similar in the four
studied bundles, exchanging their value still leads to the same overall profile in most cases.
For the MD, results showed that the CST is also stable. This is most likely due to the
complex 1D profile of the CST for the three metrics, as it defines unique landmarks that
are picked by our algorithm for accurate realignment. Regarding the AF, exchanging the
displacement from the FA or AFD yields similar profiles, an observation that does not hold
for the MD metric. As the MD metric for the AF has a rather flat profile, the algorithm
might pick up a spurious displacement due to the lack of well-defined features to exploit.
Avants et al. (2011) also reached a similar conclusion in the context of 3D volume regis-
tration when using different metrics such as the mean square difference, cross-correlation
or mutual information; using different metrics, type of registration or registering subject
A onto subject B (and vice versa) leads to slightly different outcomes. We have fixed the
maximally allowed displacement to 15% of the length of the bundle, but similar conclu-
sions also applied for 10% and 20% of maximum displacement as shown in Section 4.8.2.
When the maximum displacement is only 5%, the AF show similar mean profiles for the
three metrics, whereas the opposite is seen in the CST. This indicates that the maximally
allowed displacement should be chosen per bundle and is data dependent. Short, straight
and simpler bundles, such as the AF, might only need small realignment, whereas more
complex structures with fanning, intersecting bundles and possibly large anatomical varia-
tions between subjects, such as the CST, likely benefit from larger maximum displacement
thresholds to find their full overlap between subjects.

4.5.3 Identifying brain regions affected by abnormalities along-tract

One of the end goal of along-tract analysis is to uncover alteration of the white matter due to,
e.g. disease at their specific locations. This is at the cost of trading the sensitivity of ROI
averaging based analysis for additional specificity along the bundle, which also depends
on the discretization of the points forming the streamlines (O’Donnell, Westin, et al.,
2009). Using simulated changes in scalar metrics from the HCP subjects, we have shown
in Fig. 4.12 how misalignment can artificially reduce the specificity of along-tract analysis.
As the affected portion of the bundle is usually unknown a priori, morphological differences
between subjects might map the affected area to different points in their 1D profile during
the representative streamlines extraction. The unaligned metrics might exhibit similar
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mean profiles between the control and altered subjects in this case, as the affected portions
would be originating from an adjacent anatomical location in each subject’s original space,
but would not be aligned in the 1D space. The mean representative streamline at the
group level could therefore average out each subject’s individual difference due to residual
misalignment, hiding the effect of interest in the process. As we have previously mentioned
in Section 4.1, this effect of averaging out important information has also been theorized
by O’Donnell, Westin, et al. (2009). However, the same effects can also become easier to
detect after realignment since the control subjects mean profile will potentially be different
from the altered subjects mean profile. This is thanks to the particular features of their
1D profile now being realigned instead of averaged out. In a similar way, if changes in the
diffusion metrics are potentially present across the whole length of a white matter bundle,
the maximum displacement threshold should be increased. This may reduce the number
of subjects identified as outliers by using a smaller maximum displacement, which would
not have been realigned in the first place. The tradeoff in allowing a larger maximum
displacement is a potential reduction in statistical power or false discoveries as less subjects
may be present at each along-tract location for statistical testing.

In our simulations, changes on the left AF and left CST are identifiable only after
realignment whereas the original control and altered average profiles are mostly similar since
each individual contribution is lost in the unaligned group averaging. After realignment,
the altered region can be identified as each realigned subject now contributes to the group
average at the same location. This effect is similar to what we observed in our simulations
in Section 4.4.1, where the CV is lower in the crossing-bundles region after realignment
and how the mean group profile is also lower after realignment. It is also noticeable on
the right AF bundle with the FA metric or on the CST bundles, but to a lesser extent,
as the overall morphology of the CST bundles stays relatively similar even after altering
the scalar metrics. Interestingly, the altered group profile seems to be subject to larger
morphometric changes after realignment than the control group counterpart. This might
indicate that sharp profile changes in each subject’s shape due to disease are automatically
picked up by our algorithm, providing realignment based on this change.

We also conducted unpaired Student’s t-tests to statistically identify the altered regions
on the same bundles and metrics as shown in Fig. 4.13. While we used an FDR correction
of 𝛼 = 0.05, different results could be obtained by choosing a different value of 𝛼. How-
ever, the main conclusion should still be valid; statistical testing performed on the realigned
datasets uncovered affected regions that were not identified in the unaligned case as shown
from the global p-values plot. This difference could be partly due to the residual misalign-
ment between subjects inadvertently canceling out the effect of interest, as coordinates are
not overlapping. In this study, we considered statistical testing at the spatial resolution in
the order of magnitude of one voxel size (1.25 mm in our case), but studying larger bundle
segments could be used as a compromise between averaging data over the whole bundle in
order to uncover effects of interest at the expense of spatial specificity (O’Donnell, Westin,
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et al., 2009).

4.5.4 Mapping to 1D space versus registration methods

In the present work, we concentrated on reducing the effect of residual misalignment be-
tween representative streamlines. As tractography is a mandatory step before using our
approach, registration methods for raw dMRI datasets would likely not reduce the mis-
alignment resulting from streamlines extraction. Some registration methods specifically
work directly on the streamlines or bundles space (e.g. Leemans, Sijbers, et al. (2006)),
but the same transformation should be applied to the underlying 3D volume containing
the metric of interest. This is because we work on metrics extracted from representative
streamlines, and not directly in the streamlines space itself, see e.g. Glozman et al. (2018)
and O’Donnell, Daducci, et al. (2017) and references therein for a review of registration
methods in dMRI.

O’Donnell, Westin, et al. (2009) state that “because within a bundle fibers have varying
lengths and their point correspondence is not known a priori, it is not possible to directly
average fiber coordinates to calculate a mean fiber”; care must be taken during the represen-
tative streamline extraction step that is at the core of the along-tract analysis framework. As
such, the required step dictating this possible misalignment is the mapping strategy used
to extract the representative streamline and how its end points are defined. Various schemes
have been proposed such as assignment to perpendicular planes (Corouge et al., 2006), vari-
ants reducing the effect of outliers by additionally considering the spatial distance between
streamlines (O’Donnell, Westin, et al., 2009), extracting representative core streamlines
with splines (Chamberland, St-Jean, et al., 2018) or resampling to a common number of
points (Colby et al., 2012). All these choices inevitably lead to differences and a mismatch
across subjects after metric extraction, even if the original underlying anatomy would be
perfectly aligned as we have shown in our synthetic experiments in Fig. 4.7. Assignment
and truncation strategies between the common points of bundles have been explored in
Colby et al. (2012) with the authors noting that all compared methods are generally suc-
cessful in extracting a meaningful (but slightly different) representation as they use different
strategies and parameters. Close similarities in the extracted metrics using the represen-
tative streamline could explain why 1D misalignment, while still present, had not been
thoroughly investigated previously. Reliably extracting the information from fanning re-
gions (e.g. CST towards the motor cortex) or from a splitting configuration (e.g. anterior
pillars of the fornix) in a single representative streamline still remains an open problem
(Chamberland, St-Jean, et al., 2018).

4.5.5 Assumptions of the DPR algorithm and limitations of this study

In the present work, we exchanged the classical assumption of 1D spatial correspondence
between points for the assumption of an equal 1D spatial distance between points. This
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latter requirement is usually fulfilled with the use of a fixed step size during tractography,
but might be void by the representative streamline extraction. Without loss of generality,
we chose to resample each subjects’ representative streamline a second time to ensure an
equal distance 𝛿min between each point. We advocate resampling to a larger number of
points than initially present to reduce possible complications due to aliasing or using win-
dowing functions for filtering (Stoica and Moses, 2005). While this theoretically increases
the computational complexity of the DPR algorithm, it also preserves the full spectra when
applying Eq. (4.1). This is not a problem in practice owing to the existence of efficient FFT
implementations; our algorithm can realign the 100 HCP subjects in less than 3 seconds
on a standard desktop with a 3.5 GHz Intel processor. The resulting realigned metrics
can then be resampled back to approximately one point per unit voxel size to minimize
the effect of multiple comparisons during statistical testing. With the development of
new methods that go beyond fixed step size tractography, such as the use of compressed
streamlines (Rheault et al., 2017), it might be beneficial to avoid this resampling step for
computational reasons after sampling metrics along non regularly spaced streamlines. An-
other approach to remove the need of resampling could be to use an FFT implementation
dealing with non-equal sampling of the data (Dutt and Rokhlin, 1993; Scargle, 1989), but
such implementations may not be as widely (and easily) available as the classical equispaced
version of the FFT algorithm.

Due to the difficulty in reproducing tractography (Maier-Hein et al., 2017), our sim-
ulations on the in vivo datasets were designed around altered versions of already extracted
scalar values. One would however expect true neurodegenerative changes to additionally in-
fluence the steps prior to tractography such as the main orientations extracted from tensors
or fODF. The results we obtained should translate as long as a representative streamline for
each bundle of interest can be reliably delineated for all subjects. Similar recommendations
apply if the white matter bundle of interest is largely affected by disease or altered when
compared to the expected overall shape from a healthy subject. Specific care should also
be taken during the prior step of extracting the representative streamlines in these cases to
ensure that relevant portions of the bundles of interest are present in all subjects (Parker
et al., 2016).

Although not considered in the present work, any quantitative diffusion metric such
as the diffusion kurtosis metrics (e.g. mean kurtosis (MK)) (Jensen and Helpern, 2010),
the axon diameter (Assaf et al., 2008), or metrics provided by NODDI (Zhang et al., 2012)
could be studied using our proposed framework. In cases of physical alterations of the
white matter (e.g. tumors, lesions), the diffusion metrics themselves may not provide ac-
curate landmarks for realignment due to differences in tractography when extracting the
representative streamline of each subject. The use of shape descriptors, such as torsion or
curvature of the bundles themselves (Leemans, Sijbers, et al., 2006), could also be employed
with DPR instead of diffusion metrics as done in the present work. These descriptors may
also be useful in cases where using a large maximum displacement threshold may yield false
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positives detections if the effects are small, see the supplementary materials Section 4.8.3
for examples. In a similar fashion, any other volume (e.g. T1 or T2 relaxometry values
(Deoni et al., 2008)) providing anatomical information of interest can be used once co-
registered to each subject’s native diffusion space. Combining the realignment information
from multiple or complementary metrics (e.g. computing their average displacement) may
improve the robustness of the DPR framework. When white matter alterations are affect-
ing the diffusion metrics to an unacceptable extent, the average displacement from these
independent anatomical features (which are presumably less affected by these effects) could
be used to circumvent this issue.

We did not investigate realignment of lateralized bundles (e.g. realignment of the
left and right AF together instead of separately) which can be useful for studying intra-
hemispheric differences between subjects (Catani et al., 2007). Variations between left
and right anatomical locations also implicitly assume that each coordinate in the 1D space
is matched against its inter hemispheric counterpart. To facilitate this mapping between
hemispheres, O’Donnell, Westin, et al. (2009) proposed to mirror all streamlines from
one hemisphere to the other, allowing a direct correspondence between the subsequently
extracted representative streamlines as they would be effectively identical. However, the
3D volume used to extract the scalar metrics of interest would possibly be different in
each hemisphere. In this context, the realignment could be done separately for each side,
providing different profiles reflecting lateralization.

4.6 Conclusion

In this paper, we developed a new correction strategy, the diffusion profile realignment
(DPR), which is designed to address residual misalignments between subjects in along-
tract analysis. Through simulations on synthetic and in vivo datasets, we have shown how
realignment based on our novel approach can reduce variability at the group level between
subjects. Furthermore, realignment of the in vivo datasets provided new insights and im-
proved sensitivity about the location of the induced changes, which could not be completely
identified at first when misalignment was present. The DPR algorithm can be integrated
in preexisting along-tract analysis pipelines as it comes just before conducting statistical
analysis. It can be used to reveal effects of interest, which may be hidden by misalignment
and has the potential to improve the specificity in longitudinal population studies beyond
the traditional ROI based analysis and along-tract analysis workflows.

4.7 Appendix: The diffusion profile realignment algorithm

This appendix outlines the diffusion profile realignment (DPR) algorithm. Our imple-
mentation is also freely available at https://github.com/samuelstjean/dpr (St-Jean, 2019)
and will be a part of ExploreDTI (Leemans, Jeurissen, et al., 2009). The synthetic datasets

94

https://github.com/samuelstjean/dpr


4.7. Appendix: The diffusion profile realignment algorithm

and metrics extracted along the representative streamlines of the HCP datasets used in this
manuscript are also available (St-Jean, Chamberland, et al., 2018).

To complement Eq. (4.1), the shift needed to maximize the overlap between the vector
𝑥 and 𝑦 is the maximum of the CCF, given by

shift(𝑥, 𝑦) = arg max(CCF(𝑥, 𝑦)). (4.2)

In practice, 𝑥 and 𝑦 are discrete and must be both zero-padded sufficiently, that is, zeros are
appended to each vector and make them artificially longer to prevent border effects when
computing the linear cross-correlation (Stoica and Moses, 2005).

Algorithm 4.1: The proposed diffusion profile realignment (DPR) algorithm.
Data: Metrics extracted from streamlines discretized (with an equal distance 𝛿min and stationary

metrics), displacement threshold t, percentage of overlap p%
Result: Realigned metrics
Step 1 : Finding a common template;
foreach streamline do

Compute the displacement d with each other streamline using Eq. (4.2);
end
Define the template as the subject which realigns the most streamlines below the threshold t;
foreach streamline do

if |d| ≤ t then
Realign the streamline unto the candidate template by its displacement d;

else
Do not touch the streamline and flag it as an outlier;

end
end
Step 2 : Realigning outliers;
foreach outlier do

Compute the new displacement nd between the template, the outlier and each other non
outlier;

if min(|d + nd|) < t then
Realign the streamline unto the template using the new displacement d + nd (see

Fig. 4.4);
Add the streamline to the pool of non outliers candidates such that it can now be used;

else
Do not touch the streamline and flag it as an outlier;

end
end
Step 3 : Truncating to overlapping coordinates;
Truncate the realigned metrics to have at least p% of overlapping streamlines;
If outliers are still present from Step 2, (optionally) exclude them from further analysis as they can
not be realigned inside the chosen displacement threshold t;
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4.8 Supplementary materials

4.8.1 Realignment of the HCP datasets

Section 4.8.1 presents counterpart results to Fig. 4.9, comparing along-tract averaged pro-
files before and after realignment, but instead using a maximally allowed displacement of
5%, 10% or 20%. Coordinates for the AF are from anterior (coordinate 0) to posterior and
the CST are drawn from inferior (coordinate 0) to superior. In general, the overall mean
profile is similar for every value of the maximally allowed displacement that were tested.

4.8.2 Displacement of the HCP datasets

Section 4.8.2 presents counterpart results to Fig. 4.11 using realignment from other metrics,
but instead using a maximally allowed displacement of 5%, 10% or 20%. Coordinates for
the AF are from anterior (coordinate 0) to posterior and the CST are drawn from inferior
(coordinate 0) to superior. Most of the trends observed previously when the displacement
was of 15% are still valid.

4.8.3 Localized alterations of the HCP datasets

Section 4.8.3 presents counterpart results to Fig. 4.14, but instead using a maximally al-
lowed displacement of 5%, 10% or 100% (no limit). Unpaired t-test (FDR corrected at
𝛼 = 0.05) with focused alterations of the metrics for each bundle of A) 25% over 1% of
the length, B) 50% over 1% of the length, C) 25% over 5% of the length and D) 50% over
5% of the length are shown. The AF left/right are represented from anterior (coordinate 0)
to posterior and the CST left/right from inferior (coordinate 0) to superior. The p-values
are on a log scale along the average streamline before realignment (dashed red lines) and
after realignment (solid blue lines) with the DPR algorithm. The horizontal dashed black
lines indicate p-value = 0.05. In general, alterations occurring over 5% of the length of
the bundle can be detected, whereas small local changes over 1% of the length are detected
only after realignment with the DPR algorithm.
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Figure 4.15: Along-tract averaged profiles (and standard deviation as the shaded area) of the un-
aligned (blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling
to the same number of points. These results are obtained by using a maximally allowed displacement
of 5%.
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Figure 4.16: Along-tract averaged profiles (and standard deviation as the shaded area) of the un-
aligned (blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling
to the same number of points. These results are obtained by using a maximally allowed displacement
of 10%.
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Figure 4.17: Along-tract averaged profiles (and standard deviation as the shaded area) of the un-
aligned (blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling
to the same number of points. These results are obtained by using a maximally allowed displacement
of 20%.
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Figure 4.18: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric
(rows). These results are obtained by using a maximally allowed displacement of 5%.
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Figure 4.19: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric
(rows). These results are obtained by using a maximally allowed displacement of 10%.
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Figure 4.20: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric
(rows). These results are obtained by using a maximally allowed displacement of 20%.
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Focused alterations with a maximum displacement of 5%
A B

C D

Figure 4.21: Unpaired t-test before and after realignment for the four bundles. These results are
obtained by using a maximally allowed displacement of 5%.
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Focused alterations with a maximum displacement of 10%
A B

C D

Figure 4.22: Unpaired t-test before and after realignment for the four bundles. These results are
obtained by using a maximally allowed displacement of 10%.
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Focused alterations without limiting the maximum displacement
A B

C D

Figure 4.23: Unpaired t-test before and after realignment for the four bundles. These results are
obtained without limiting the allowed maximum displacement. This leads to false effects for the AF
right bundles, presumably because structural differences, rather than local alterations, are driving the
realignment process.
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Chapter 5. Automated characterization of noise distributions

Abstract

Knowledge of the noise distribution in magnitude diffusion MRI images is the
centerpiece to quantify uncertainties arising from the acquisition process. The
use of parallel imaging methods, the number of receiver coils and imaging fil-
ters applied by the scanner, amongst other factors, dictate the resulting signal
distribution. Accurate estimation beyond textbook Rician or noncentral chi dis-
tributions often requires information about the acquisition process (e.g. coils
sensitivity maps or reconstruction coefficients), which is usually not available.
We introduce two new automated methods using moments and maximum like-
lihood equations of the Gamma distribution to estimate noise distributions as
they explicitly depend on the number of coils, making it possible to estimate all
unknown parameters using only the magnitude data. A rejection step is used
to make the framework automatic and robust to artifacts. Simulations using
stationary and spatially varying noncentral chi noise distributions were created
for two diffusion weightings with SENSE or GRAPPA reconstruction and 8,
12 or 32 receiver coils. Furthermore, MRI data of a water phantom with dif-
ferent combinations of parallel imaging were acquired on a 3T Philips scanner
along with noise-only measurements. Finally, experiments on freely available
datasets from a single subject acquired on a 3T GE scanner are used to assess
reproducibility when limited information about the acquisition protocol is avail-
able. Additionally, we demonstrated the applicability of the proposed methods
for a bias correction and denoising task on an in vivo dataset acquired on a 3T
Siemens scanner. A generalized version of the bias correction framework for
non integer values of 𝑁 is also introduced. The proposed framework is com-
pared with three other algorithms with datasets from three vendors, employing
different reconstruction methods. Simulations showed that assuming a Rician
distribution can lead to misestimation of the noise distribution in parallel imag-
ing. Results on the acquired datasets showed that signal leakage in multiband
can also lead to a misestimation of the noise distribution. Repeated acquisitions
of in vivo datasets show that the estimated parameters are stable and have lower
variability than compared methods. Results for the bias correction and denoising
task show that the proposed methods reduce the appearance of noise at high b-
value. The proposed algorithms herein can estimate both parameters of the noise
distribution automatically, are robust to signal leakage artifacts and perform best
when used on acquired noise maps.

Keywords: Diffusion MRI, Noise estimation, Parallel acceleration, Gamma distribution,
GRAPPA, SENSE
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5.1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a noninvasive imaging technique that
allows probing microstructural properties of living tissues. Advances in parallel imaging
techniques (Griswold et al., 2002; Pruessmann et al., 1999), such as accelerated acquisi-
tions (e.g. partial k-space (Storey et al., 2007), multiband imaging (Moeller et al., 2010;
Nunes et al., 2006) and compressed sensing (Lustig et al., 2007; Paquette et al., 2015)),
have greatly reduced the inherently long scan time in dMRI. New acquisition methods and
pulse sequences in dMRI are also pushing the limits of spatial resolution while reducing
scan time (Holdsworth et al., 2019), which also affects the signal distribution in ways that
are challenging to model. Estimation of signal distributions deviating from theoretical
cases is challenging and oftentimes requires information such as coil sensitivities or recon-
struction matrices. This information may not be recorded at acquisition time or is even
not available from the scanner, making techniques relying on these parameters difficult to
apply in practice. Even though the magnitude signal model is still valid nowadays, the use
of image filters (Dietrich et al., 2008), acceleration methods subsampling k-space (e.g. the
SENSE (SENsitivity ENcoding) (Pruessmann et al., 1999), GRAPPA (GeneRalized Au-
tocalibrating Partial Parallel Acquisition) (Griswold et al., 2002; Heidemann et al., 2012)
or the homodyne detection methods (Noll et al., 1991)) and spatial correlation between
coil elements (Aja-Fernández, Vegas-Sánchez-Ferrero, et al., 2014; Dietrich et al., 2008)
influence, amongst other factors, the parameters of the resulting signal distribution.

With the recent trend towards open data sharing and large multicenter studies using
standardized protocols (Duchesne et al., 2019; Emaus et al., 2015), differences in hardware,
acquisition or reconstruction algorithms may inevitably lead to different signal distributions.
This may affect large-scale longitudinal studies investigating neurological changes due to
these “scanner effects” (Sakaie, Zhou, et al., 2018) as the acquired data may be fundamen-
tally different across sites in terms of statistical properties of the signal. Algorithms have
been developed to mitigate these potential differences (Mirzaalian et al., 2018; Tax et al.,
2019), but characterization of the signal distribution from various scanners is challenging
due to the black box nature of the acquisition process, especially in routine clinical settings.
While some recent algorithms for dMRI are developed to include information about the
noise distribution (Collier et al., 2018; Sakaie and Lowe, 2017), there is no method, to
the best of our knowledge, providing a fully automated way to characterize the noise dis-
tribution using information from the magnitude data itself only. Due to this gap between
the physical acquisition process and noise estimation theory, noise distributions are either
assumed as Rician (with parameter 𝜎𝑔 related to the standard deviation) or noncentral chi
(with fixed degrees of freedom 𝑁) and concentrate in estimating the noise standard devi-
ation 𝜎𝑔 (Koay, Özarslan, and Pierpaoli, 2009; Tabelow et al., 2015; Veraart et al., 2016).
This assumption inevitably leads to misestimation of the true signal distribution as 𝑁 and
𝜎𝑔 are interdependent for some reconstruction algorithms (Aja-Fernández, Brion, et al.,
2013). Reconstruction filters preserving only the real part of the signal also cause 𝑁 to
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deviate from the Rician noise distribution, producing instead a half-Gaussian signal distri-
bution (Dietrich et al., 2008). Misestimation of the appropriate signal distribution could
impact subsequent processing steps such as bias correction (Koay, Özarslan, and Basser,
2009), denoising (St-Jean, Coupé, et al., 2016) or diffusion model estimation (Landman
et al., 2007; Sakaie and Lowe, 2017; Zhang et al., 2012), therefore negating potential gains
in statistical power from analyzing datasets acquired in different centers or from different
vendors.

In this work, we propose to estimate the parameters 𝜎𝑔 and 𝑁 from either the magni-
tude data or the acquired noise maps by using a change of variable to a Gamma distribution
Gamma(𝑁, 1) (Koay, Özarslan, and Pierpaoli, 2009), whose first moments and maximum
likelihood equations directly depend on 𝑁 . This makes the proposed method fast and easy
to apply to existing data without additional information, while being robust to artifacts
by rejecting outliers of the distribution. Preliminary results of this work have been pre-
sented at the annual meeting of the MICCAI (St-Jean, De Luca, Viergever, et al., 2018).
This manuscript now contains additional theory, simulations including signal correlations
and parallel acceleration, and experiments on phantoms and in vivo datasets acquired with
parallel and multiband acceleration. As example applications, we perform bias correction
and denoising on an in vivo dataset using the estimated distribution derived with each
algorithm.

5.2 Theory

In this section, we introduce the necessary background on the Gamma distribution, its
moments and maximum likelihood equations. Expressing the signal with a Gamma distri-
bution highlights equations which can be solved to estimate parameters 𝜎𝑔 and 𝑁 .

5.2.1 Probability distribution functions of MRI data

To account for uncertainty in the acquisition process, the complex signal measured in k-
space by the receiver coil array can be modeled with a separate additive zero mean Gaussian
noise for each channel with identical variance 𝜎2

𝑔 (Gudbjartsson and Patz, 1995). The signal
acquired from the real and imaginary part of each coil in a reconstructed magnitude image
can be expressed as (Constantinides et al., 1997)

𝑚𝑁 =
√√√
⎷

𝑁
∑
𝑛=1

𝑚2
𝑅𝑛 + 𝑚2

𝐼𝑛, (5.1)

where 𝑚𝑅𝑛 and 𝑚𝐼𝑛 are the real and imaginary parts of the signal, respectively, as measured
by coil number 𝑛, 𝑁 is the number of degrees of freedom (which can be up to the number
of coils in the absence of accelerated parallel imaging) and 𝑚𝑁 is the resulting reconstructed
signal value for a given voxel. The magnitude signal can therefore be approximated by a
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noncentral chi distribution and has a probability density function (pdf ) given by (Dietrich
et al., 2008; Koay, Özarslan, and Basser, 2009)

pdf(𝑚|𝜂, 𝜎𝑔, 𝑁) = 𝑚𝑁

𝜎2
𝑔𝜂𝑁−1 exp (−(𝑚2 + 𝜂2)

2𝜎2
𝑔

) 𝐼𝑁−1 (𝑚𝜂
𝜎2

𝑔
) 𝑑𝑚, (5.2)

where 𝑚 is the noisy signal value for a given voxel, 𝜂 is the (unknown) noiseless signal
value, 𝜎𝑔 is the Gaussian noise standard deviation, 𝑁 is the number of degrees of freedom
and 𝐼𝜈(𝑧) is the modified Bessel function of the first kind.

With the introduction of multiband imaging and other modern acquisition methods,
parameters estimation of the magnitude data is not straightforward anymore. The number
of degrees of freedom 𝑁 , which is related to the number of receiver coils, likely deviates
from heuristic estimation based on the actual number of coils as 𝑁 also depends on the
reconstruction technique employed (Sotiropoulos et al., 2013). The pdf of the magnitude
data can be modeled by considering spatially varying degrees of freedom N𝑒𝑓𝑓 and standard
deviation 𝜎𝑒𝑓𝑓 (also called the effective values) and we generally have N𝑒𝑓𝑓 ≤ 𝑁 , (Aja-
Fernández, Vegas-Sánchez-Ferrero, et al., 2014; Dietrich et al., 2008).

The noncentral chi distribution includes the Rician (𝑁 = 1), the Rayleigh (𝑁 =
1, 𝜂 = 0) and the central chi distribution (𝜂 = 0) as special cases (Dietrich et al., 2008).
The probability density function (pdf ) of the central chi distribution is given by

pdf(𝑚|𝜂 = 0, 𝜎𝑔, 𝑁) = 𝑚2𝑁−1

2𝑁−1𝜎2𝑁
𝑔 Γ(𝑁) exp (−𝑚2

2𝜎2
𝑔

)𝑑𝑚, (5.3)

where Γ(𝑥) is the Gamma function. With a change of variable introduced by (Koay,
Özarslan, and Pierpaoli, 2009), Eq. (5.3) can be rewritten as a Gamma distributionGamma(𝑁, 1)
with 𝑡 = 𝑚2/2𝜎2

𝑔, 𝑑𝑡 = 𝑚/𝜎2
𝑔𝑑𝑚 which has a pdf given by

pdf(𝑡|𝑁) = 1
Γ(𝑁)𝑡𝑁−1 exp (−𝑡)𝑑𝑡. (5.4)

Eq. (5.4) only depends on 𝑁 , which can be estimated from the sample values.

5.2.2 Parameter estimation using the method of moments and maximum likelihood

The method of moments The pdf of Gamma(𝛼, 𝛽) is defined as

pdf(𝑥|𝛼, 𝛽) = 𝑥𝛼−1

Γ(𝛼)𝛽𝛼 exp (−𝑥/𝛽)𝑑𝑥 (5.5)
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and has mean 𝜇𝑔𝑎𝑚𝑚𝑎 and variance 𝜎2
𝑔𝑎𝑚𝑚𝑎 given by

𝜇𝑔𝑎𝑚𝑚𝑎 = 𝛼𝛽, 𝜎2
𝑔𝑎𝑚𝑚𝑎 = 𝛼𝛽2. (5.6)

Another useful identity comes from the sum of Gamma distributions, which is also a
Gamma distribution (Weisstein, 2017) such that if 𝑡𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛽), then

𝐾
∑
𝑖=1

𝑡𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝐾

∑
𝑖=1

𝛼𝑖, 𝛽) . (5.7)

From Eq. (5.6), we obtain that the mean and the variance of the distribution Gamma(𝑁, 1)
are in fact equal and of value 𝑁 . That is, we can estimate the Gaussian noise standard
deviation 𝜎𝑔 and the number of coils 𝑁 from the sample moments of the magnitude images
themselves, provided we can select voxels without any signal contribution where 𝜂 = 0.
Firstly, 𝜎𝑔 can be estimated from Eq. (5.6) as

𝜎𝑔 = 1√
2

√√√
⎷

∑𝑉
𝑣=1 𝑚4

𝑣

∑𝑉
𝑣=1 𝑚2

𝑣
− 1

𝑉
𝑉

∑
𝑣=1

𝑚2
𝑣, (5.8)

where 𝑉 is the number of identified noise only voxels and 𝑚𝑣 the value of such a voxel, see
Section 5.7.1 for the derivations. Once 𝜎𝑔 is known, 𝑁 can be estimated from the sample
mean of those previously identified voxels as

𝑁 = 1
𝑉

𝑉
∑
𝑣=1

𝑡𝑣 = 1
2𝑉 𝜎2

𝑔

𝑉
∑
𝑣=1

𝑚2
𝑣. (5.9)

Derivations of Eqs. (5.8) and (5.9) are detailed in Section 5.7.1.

Maximum likelihood equations for the Gamma distribution Estimation based on the
method of maximum likelihood yields two equations for estimating 𝛼 and 𝛽. Rearranging
the equations for a Gamma distribution will give Eq. (5.9) and a second implicit equation
for 𝑁 that is given by (Thom, 1958)

log(𝛽) + 𝜓(𝛼) = 1
𝑉

𝑉
∑
𝑣=1

log 𝑡𝑣, (5.10)

where 𝜓(𝑥) = 𝑑
𝑑𝑥 log(Γ(𝑥)) is the digamma function. For the special case Gamma(𝑁, 1),

we can rewrite Eq. (5.10) as

𝜓(𝑁) = 1
𝑉

𝑉
∑
𝑣=1

log(𝑚2
𝑣/2𝜎2

𝑔). (5.11)
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Combining Eq. (5.9) and Eq. (5.11), we also have an implicit equation to find 𝜎𝑔

𝜓 ( 1
2𝑉 𝜎2

𝑔

𝑉
∑
𝑣=1

𝑚2
𝑣) = 1

𝑉
𝑉

∑
𝑣=1

log(𝑚2
𝑣/2𝜎2

𝑔) = 1
𝑉

𝑉
∑
𝑣=1

log(𝑚2
𝑣) − log(2𝜎2

𝑔). (5.12)

As Eqs. (5.11) and (5.12) have no closed form solution, they can be solved numerically e.g.
using Newton’s method. See Section 5.7.1 for practical implementation details.

5.3 Material and Methods

5.3.1 Automated and robust background separation

The equations we presented in Section 5.2.1 are only valid when 𝜂 = 0 by construction and
assume that each selected voxel 𝑚𝑣 belongs to the same Gamma distribution. Following
a methodology similar to (Koay, Özarslan, and Pierpaoli, 2009), we assume that each 2D
slice with the same spatial location belongs to the same statistical distribution throughout
each 3D volume. This practical assumption allows selecting a large number of noise only
voxels for computing statistics as well as identifying (and subsequently discarding) potential
slice acquisition artifacts that may affect one volume, but not the rest of the acquisition.
Using Eq. (5.7), the sum of all DWIs can be used to separate the voxels belonging to the
Gamma distribution Gamma(𝐾𝑁, 1), where K is the number of acquired DWIs, from the
voxels not in that specific distribution with a rejection step using the inverse cumulative
distribution function1(cdf ). In the particular case Gamma(𝐾𝑁, 1) at a probability level
𝑝, the inverse cdf is icdf(𝛼, 𝑝) = 𝑃 −1(𝛼, 𝑝), where 𝑃 −1 is the inverse lower incomplete
regularized gamma function2. This relationship can be used to identify potential outliers,
such as voxels which contain non background signal, by excluding any voxel 𝑚𝑣 whose value
does not fall between 𝜆− = icdf(𝛼, 𝑝/2) and 𝜆+ = icdf(𝛼, 1 − 𝑝/2), i.e. 𝑚𝑣 is an outlier if
𝑚𝑣 < 𝜆− or 𝑚𝑣 > 𝜆+.

To provide a better understanding of the change of variable 𝑡 = 𝑚2/2𝜎2
𝑔, Fig. 5.1

shows the histogram for a synthetic dataset at b = 3000 s/mm2, which will be detailed
later in Section 5.3.2. Voxels belonging to the background are easily separated in terms
of the Gamma distribution after transformation, thus allowing estimation of parameters
from voxels truly belonging to the noise distribution, see Section 5.7.3 and (St-Jean, De
Luca, Viergever, et al., 2018) for technical details. Our implementation of the proposed
algorithm is freely available3 (St-Jean, De Luca, Tax, et al., 2019).

1The inverse cdf is also known as the quantile function.
2As there is no analytical solution to the inverse cdf of a Gamma distribution, one can use the function

gaminv(𝑝, 𝛼, 𝛽 = 1) in Matlab or InverseGammaRegularized(𝛼, 1−𝑝) in Mathematica to numerically estimate
it.

3https://github.com/samuelstjean/autodmri
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Figure 5.1: Histogram of the synthetic data at b = 3000 s/mm2 A) before the change of variable to a
Gamma distribution and B) after the change of variable to a Gamma distribution for 𝑁 = 1 and 𝑁 = 12.
Summing all 𝐾 DWIs together separates the background voxels from the rest of the data, which follows
a Gamma distribution Gamma(𝐾𝑁, 1) by construction. In C), a view of the left part from B) with
the theoretical histograms of Gamma distributions from 𝑁 = 1 up to 𝑁 = 12. The black dotted lines
represent the lower bound 𝜆− to the upper bound 𝜆+, with 𝑝 = 0.05, 𝑁𝑚𝑖𝑛 = 1 and 𝑁𝑚𝑎𝑥 = 12. This
broad search covers the background voxels in both cases while excluding remaining voxels which do
not belong to the distribution Gamma(𝐾𝑁, 1).

5.3.2 Datasets and experiments

Synthetic phantom datasets Two synthetic phantom configurations from previous dMRI
challenges were used. The first simulations were based on the ISBI 2013 HARDI chal-
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lenge4 using phantomas (Caruyer et al., 2014). We used the given 64 gradient directions
to generate two separate noiseless single-shell phantoms with either b = 1000 s/mm2 or
b = 3000 s/mm2 and an additional b = 0 s/mm2 volume. The datasets were then corrupted
with Rician (𝑁 = 1) and noncentral chi noise profiles (𝑁 = 4, 8 and 12), both stationary
and spatially varying, at a signal-to-noise ratio (SNR) of 30 according to

̂𝐼 =
√√√
⎷

𝑁
∑

𝑖=0,𝑗=0
( 𝐼√

𝑁 + 𝜏𝜖𝑖)
2

+ (𝜏𝜖𝑗)2, where 𝜖𝑖, 𝜖𝑗 ∼ ℕ(0, 𝜎2
𝑔), (5.13)

where 𝐼 is the noiseless volume, ̂𝐼 is the resulting noisy volume, 𝜏 is a mask for the spatial
noise pattern, ℕ(0, 𝜎2

𝑔) is a Gaussian distribution of mean 0 and variance 𝜎2
𝑔 = (�̄�/SNR)2

and �̄� = (1/𝑉 ∑𝑉
𝑣=1 𝑚𝑣) with 𝑚𝑣 each voxel of the b = 0 s/mm2 image inside the white

matter. In the stationary noise case, 𝜏 is set to 1 so that the noise is uniform. For the
spatially varying noise case, 𝜏 is a sphere with a value of 1 in the center up to a value of 1.75
at the edges of the phantom, thus generating a stronger noise profile outside the phantom
than for the stationary noise case. Since all datasets are generated at SNR 30, the noise
standard deviation 𝜎𝑔 is the same even though the b-value or number of coils 𝑁 is different,
but the magnitude standard deviation 𝜎𝑚𝑁

is lower than 𝜎𝑔.
The second set of synthetic experiments is based on the ISMRM 2015 tractography

challenge (Maier-Hein et al., 2017), which consists of 25 manually delineated white matter
bundles. Ground truth data consisting of 30 gradient directions at either b = 1000 s/mm2 or
b = 3000 s/mm2 and 3 b = 0 s/mm2 images at a resolution of 2 mm isotropic was generated
using fiberfox (Neher et al., 2014) without artifacts or subject motion. Subsequent noisy
datasets were created at SNR 20 by simulating an acquisition with 8, 12 and 32 coils using
the parallel MRI simulation toolbox5 with SENSE (Pruessmann et al., 1999) or GRAPPA
(Griswold et al., 2002) reconstructions with an acceleration factor of 𝑅 = 2. The SENSE
simulated datasets also included spatial correlations between coils of 𝜌 = 0.1, increasing
the spatially varying effective noise standard deviation 𝜎𝑔 and keeping the signal Rician
distributed (𝑁 = 1). For the GRAPPA reconstructed datasets, 32 calibrating lines were
sampled in the k-space center, neglecting spatial correlations (𝜌 = 0) as it is a k-space
method (Aja-Fernández and Tristán-Vega, 2015). The resulting effective values of 𝑁 and
𝜎𝑔 will be both spatially varying. We additionally generated 33 synthetic noise maps per
dataset by setting the underlying signal value to 𝜂 = 0 and performing the reconstruction
using the same parameters as the DWIs. All generated datasets are available online (St-Jean,
De Luca, Tax, et al., 2018).

Acquired phantom datasets We acquired phantom images of a bottle of liquid on a 3T
Philips Ingenia scanner using a 32 channels head coil with a gradient strength of 45 mT/m.

4http://hardi.epfl.ch/static/events/2013_ISBI/
5https://mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
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We varied the SENSE factor from 𝑅 = 1, 2 or 3 and multiband acceleration factors from
no multiband (MB), MB = 2 or MB = 3 while fixing remaining acquisition parameters
to investigate their influence on the resulting signal distributions, resulting in 9 different
acquisitions. The datasets consist of 5 b = 0 s/mm2 volumes and 4 shells with 10 DWIs
each at b = 500 s/mm2, b = 1000 s/mm2, b = 2000 s/mm2 and b = 3000 s/mm2 with a voxel
size of 2 mm isotropic and TE / TR = 135 ms / 5000 ms, Δ/𝛿 = 66.5 ms / 28.9 ms. Six
noise maps were also acquired during each of the experiments by disabling the RF pulse
and gradients of the sequence. The acquired phantom datasets are also available (St-Jean,
De Luca, Tax, et al., 2018).

In vivo datasets A dataset consisting of four repetitions of a single subject6 was also used
to assess the reproducibility of noise estimation without a priori knowledge (Poldrack et
al., 2015). This is the dataset we previously used in our MICCAI manuscript (St-Jean, De
Luca, Viergever, et al., 2018). The acquisition was performed on a GE MR750 3T scanner
at Stanford university, where a 3x slice acceleration with blipped-CAIPI shift of FOV/3
was used, partial Fourier 5/8 with a homodyne reconstruction and a minimum TE of 81
ms. Two acquisitions were made in the anterior-posterior phase encode direction and the
two others in the posterior-anterior direction. The voxelsize was 1.7 mm isotropic with 7
b = 0 s/mm2 images, 38 volumes at b = 1500 s/mm2 and 38 volumes at b = 3000 s/mm2.
As the acquisition used a homodyne filter to fill the missing k-space, this should lead in
practice to a half Gaussian noise profile, a special case of the noncentral chi distribution
with 𝑁 = 0.5, due to using only the real part of the signal for the final reconstruction
(Chap. 13 Bernstein et al., 2004; Dietrich et al., 2008; Noll et al., 1991).

In addition, one dataset acquired on a 3T Siemens Connectom scanner from the 2017
MICCAI harmonization challenge7 consisting of 16 b = 0 s/mm2 volumes and 3 shells with
60 DWIs each at b = 1200 s/mm2, b = 3000 s/mm2 and b = 5000 s/mm2 was used (Tax
et al., 2019). The voxel size was 1.2 mm isotropic with a pulsed-gradient spin-echo echo-
planar imaging (PGSE-EPI) sequence and a gradient strength of 300 mT/m. Multiband
acceleration MB = 2 was used with GRAPPA parallel imaging with 𝑅 = 2 and an adaptive
combine reconstruction employing a 32 channels head coil. Other imaging parameters
were TE / TR = 68 ms / 5400 ms, Δ/𝛿 = 31.1 ms / 8.5 ms, bandwidth of 1544 Hz/pixel
and partial Fourier 6/8.

Noise estimation algorithms for comparison To assess the performance of the proposed
methods, we used three other noise estimation algorithms previously used in the context of
dMRI. Default parameters were used for all of the algorithms as done in St-Jean, De Luca,
Viergever, et al. (2018). The local adaptive noise estimation (LANE) algorithm (Tabelow

6https://openfmri.org/dataset/ds000031
7https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/

cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
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et al., 2015) is designed for noncentral chi signal estimation, but requires a priori knowl-
edge of 𝑁 . Since the method works on a single 3D volume, we only use the b = 0 s/mm2

image for all of the experiments to limit computations as the authors concluded that the
estimates from a single DWI are close to the mean estimate. We also use the Marchenko-
Pastur (MP) distribution fitting on the principal component analysis (PCA) decomposition
of the diffusion data, which is termed MPPCA (Veraart et al., 2016). Finally, we also com-
pare to the Probabilistic Identification and Estimation of Noise (PIESNO) (Koay, Özarslan,
and Pierpaoli, 2009), which originally proposed the change of variable to the Gamma dis-
tribution that is at the core of our proposed method. PIESNO requires knowledge of
𝑁 (which is kept fixed by the algorithm) to iteratively estimate 𝜎𝑔 until convergence by
removing voxels which do not belong to the distribution Gamma(𝑁, 1) for a given slice.
We set 𝑝 = 0.05 and 𝑙 = 50 for the initial search of 𝜎𝑔 in PIESNO and our proposed
method, with additional parameters set to 𝑁𝑚𝑖𝑛 = 1 and 𝑁𝑚𝑎𝑥 = 12 for all cases. When
estimating distributions from noise maps, we compute values in small local windows of size
3 × 3 × 3. To the best of our knowledge, ours is the first method which estimates both
𝜎𝑔 and 𝑁 jointly without requiring any prior information about the reconstruction process
of the MRI scanner. Because PIESNO and LANE both require knowledge of the value
of 𝑁 , we set the correct value of 𝑁 for the spatially varying noise phantom experiments
and 𝑁 = 1 for the remaining experiments as suggested by Tabelow et al. (2015) when 𝑁
is unknown. We quantitatively assess the performance of each method on the synthetic
datasets by measuring the standard deviation of the noise and the relative error inside the
phantom against the known value of 𝜎𝑔, computed as

relative error = 100 × (𝜎𝑔𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
− 𝜎𝑔𝑡𝑟𝑢𝑒

) /𝜎𝑔𝑡𝑟𝑢𝑒
. (5.14)

As PIESNO and our proposed methods estimate a single value per slice whereas MPPCA
and LANE provide estimates from small spatial neighborhood, we report the mean value
and the standard deviation estimated inside the synthetic phantoms on each slice. For
the acquired phantom datasets, we report the estimated noise distributions using both the
DWIs and the measured noise maps for all 9 combinations of parallel imaging parameters
that were acquired. For the in vivo datasets, we report once again the noise distributions
estimated by each method. The reproducibility of the estimated distributions is assessed
on the four GE datasets while the Connectom dataset is used to evaluate the performance
of each compared algorithm on a bias correction and denoising task. In addition, we report
𝑁 as estimated by our proposed methods for all cases.

Bias correction and denoising of the Connectom dataset In a practical setting, small
misestimation in the noise distribution (e.g. spatially varying distribution vs nature of the
distribution) might not impact much the application of choice. We evaluate this effect
of misestimation on the Connectom dataset with a bias correction and a denoising task.
Specifically, we apply noncentral chi bias correction (Koay, Özarslan, and Basser, 2009)

121



Chapter 5. Automated characterization of noise distributions

on the in vivo dataset from the CDMRI challenge using Eq. (5.37). The algorithm is
initialized with a spherical harmonics decomposition of order 6 (Descoteaux et al., 2007)
as done in St-Jean, Coupé, et al. (2016). The data is then denoised using the non local
spatial and angular matching (NLSAM) algorithm with 5 angular neighbors where each
b-value is treated separately (St-Jean, Coupé, et al., 2016). Default parameters of a spatial
patch size of 3 × 3 × 3 were used and the estimation of 𝜎𝑔 as computed by each method
was given to the NLSAM algorithm. For MPPCA, LANE and PIESNO, a default value of
𝑁 = 1 was used and the value of 𝑁 as computed by the moments and maximum likelihood
equations for the proposed methods. The bias correction algorithm was also generalized
for non integer values of 𝑁 as detailed in Section 5.7.2.

5.4 Results

We show here results obtained on the phantoms and in vivo datasets. The first set of
simulations uses a sum of square reconstruction with stationary and spatially varying noise
profiles. The second set of simulations includes SENSE and GRAPPA reconstructions,
resulting in both spatially varying signal distribution profiles. Finally, the distributions es-
timated by each algorithm for the in vivo dataset are used for a bias correction and denoising
task.

5.4.1 Synthetic phantom datasets

Simulations with a sum of squares reconstruction Fig. 5.2 shows results from simula-
tions with stationary and spatially varying noise profiles for all datasets as estimated inside
the phantom. For stationary noise profiles with 𝑁 unknown, estimation of 𝜎𝑔 is the most
accurate for the proposed methods with an error of about 1%, followed by MPPCA mak-
ing an error of approximately 5% and LANE of 15%. The error of PIESNO increases
with the value of 𝑁 , presumably due to misspecification in the signal distribution, whereas
MPPCA and LANE are both stable in their estimation with increasing values of 𝑁 . The
proposed methods using equations based on the moments and maximum likelihood recov-
ers the correct value of 𝜎𝑔 in all cases with the lowest variance across slices, indicating that
the estimated value of 𝜎𝑔 is similar in all slices as expected. The same behavior is observed
for PIESNO when 𝑁 = 1, but the estimated 𝜎𝑔 is larger than the correct value by two to
three times when 𝑁 is misspecified. In the spatially varying noise case where 𝑁 is known,
the moments, maximum likelihood equations and PIESNO all perform similarly with ap-
proximately 2% of error. LANE generally outperforms MPPCA except for the 𝑁 = 12
case, but still misestimates 𝜎𝑔 by approximately 15% and 25% respectively. Only the pro-
posed methods and MPPCA are independent of correctly specifying 𝑁 . Finally, Fig. 5.3
shows the estimated values of 𝑁 by the proposed methods. Estimation generally follows
the correct value, regardless of misestimation of 𝜎𝑔.
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A)

B)

Figure 5.2: Percentage of error when the real value of 𝑁 is known and 𝜎𝑔 is constant (in A))
and 𝑁 is known with 𝜎𝑔 spatially varying (in B)) with the mean (solid line) and standard deviation
(shaded area). All methods underestimate spatially varying 𝜎𝑔, except for LANE with 𝑁 = 12 which
overestimates it instead. On average, all methods are tied at around 5% of error with MPPCA reaching
approximately 25% of error. Of interesting note, the proposed methods are tied with PIESNO when
the correct value of 𝑁 is given to the latter, but do not require an estimate of 𝑁 , which is now an
output instead of a prerequisite.

Simulations with parallel imaging Fig. 5.4 shows the estimated values of 𝜎𝑔 from a
SENSE reconstruction and Fig. 5.5 shows the results for the GRAPPA reconstructed
datasets. For SENSE, estimation using noise maps is the most precise for both proposed
methods and PIESNO where the average error is around 0, followed by LANE when using
DWIs as the input which results in 10% of overestimation. MPPCA generally underesti-
mates 𝜎𝑔 by around 15% for data at b = 1000 s/mm2 and 30% for data at b = 3000 s/mm2.
LANE instead overestimates when using DWIs and underestimates 𝜎𝑔 when using noise
maps and knowing the correct value of 𝑁 = 1. The proposed methods (the moments
and maximum likelihood equations) and PIESNO are performing similarly, but PIESNO
requires knowledge of 𝑁 = 1. Estimation is also more precise for the three methods using
the Gamma distribution (moments, maximum likelihood and PIESNO) than those using
local estimations (MPPCA and LANE) and closest to the true values when using noise
maps. In the case of GRAPPA, results are similar to the SENSE experiments with the ex-
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Figure 5.3: Estimated value of 𝑁 using equations from the moments (top) and with maximum
likelihood (bottom) for the proposed methods. Even for the spatially variable case where 𝜎𝑔 is slightly
underestimated, the estimated values of 𝑁 are stable and correspond to the real values used in the
synthetic simulations in every case.

ception of MPPCA being more precise than the compared methods for the b = 1000 s/mm2

case and performs equally well at b = 3000 s/mm2 as the proposed methods with an average
error of about 20%. Results using LANE are similar with increasing number of coils when
assuming 𝑁 = 1, while the estimated value from PIESNO also increases with the number
of coils as previously seen in Fig. 5.2. In this case, LANE overestimates 𝜎𝑔 by around 50%
when using DWIs, but performs similarly to MPPCA when estimating 𝜎𝑔 from the noise
maps. Estimation from noise maps using the moments or maximum likelihood equations
is the most precise in all cases. The error of PIESNO increases with 𝑁 as seen in Fig. 5.5
panel C). This is caused by mistakenly including gray matter voxels of low intensity in
the estimated distribution while they are correctly excluded automatically by the proposed
methods. Finally, Fig. 5.6 shows the estimated values of N𝑒𝑓𝑓 using the datasets from
Figs. 5.4 and 5.5 by the proposed methods. For the SENSE case, the true value is a con-
stant 𝑁 = 1 by construction and the estimated values by both algorithms are on average
correct with the maximum likelihood equations having the lowest variance. In the case
of GRAPPA, values of 𝑁 vary spatially inside the phantom and depend on the per voxel
signal intensity, just as 𝜎𝑔 does in Fig. 5.5. This leads to some overestimation when only
background voxels are considered, with the best estimation obtained when using the noise
maps. For simulations using 8 and 12 coils, estimated values of 𝑁 are, in general, following
the expected values. However, the spatially varying pattern can not be fully recovered as
the correct value of 𝑁 depends on the true signal intensity 𝜂 in each voxel, which is not
present when collecting noise only measurements.
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A) B)

C)

Figure 5.4: Estimation of the noise standard deviation 𝜎𝑔 (in A) and the percentage error (in B)
inside the phantom only for each method using a SENSE reconstruction with 8, 12 or 32 coils. The
left columns (basis = DWIs) shows estimation using all of the DWIs, while the right column (basis
= noise maps) shows the estimated values from synthetic noise maps. Results for b = 1000 s/mm2

are on the top row, while the bottom row shows results for the b = 3000 s/mm2 datasets. Figure
C) shows the spatially estimated values of 𝜎𝑔 using the b = 3000 s/mm2 dataset with 32 coils for a
single slice. The top row shows the results from the true distribution and local estimation as done by
MPPCA and LANE. The general trend shows that even though MPPCA and LANE misestimate 𝜎𝑔,
they still follow the spatially varying pattern (lower at edges with the highest intensity near the middle)
from the correct values. In the bottom row, voxels identified as belonging to the same distribution
Gamma(𝑁, 1) are overlaid in yellow over the sum of all DWIs. Note how voxels containing signal from
the DWIs are excluded by all three methods.
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A) B)

C)

Figure 5.5: Estimation of the noise standard deviation 𝜎𝑔 (in A) and the percentage error (in B)
inside the phantom only for each method using a GRAPPA reconstruction with 8, 12 or 32 coils,
using the same conventions as Fig. 5.4. Figure C) shows the spatially estimated values of 𝜎𝑔 using
the b = 3000 s/mm2 dataset with 32 coils for a single slice. The top row shows the true value of
𝜎𝑔 and the spatial estimation from MPPCA and LANE. There is once again a misestimation for both
methods while following the correct spatially varying pattern. In the bottom row, voxels identified as
belonging to the same distribution Gamma(𝑁, 1) are overlaid in yellow over the sum of all DWIs. Note
how PIESNO mistakenly selects some low intensity voxels belonging to the gray matter, in addition
to all of the voxels in the background, which causes an overestimation of 𝜎𝑔 with a fixed value of
𝑁 = 1. Both proposed methods instead select voxels with small variations in intensity as belonging
to the same distribution without mistakenly selecting gray matter voxels.

5.4.2 Acquired phantom datasets

Fig. 5.7 shows the estimated values of 𝜎𝑔 for all methods with a SENSE acceleration of
rate 𝑅 = 1, 2 and 3 with multiband imaging at acceleration factors of MB = 2, MB = 3 or
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A) B)

C) D)

Figure 5.6: The estimated values of 𝑁 for SENSE (left column) and GRAPPA (right column) for
the b = 1000 s/mm2 (first row of boxplots) and b = 3000 s/mm2 (second row of boxplots) datasets.
The left column shows results computed from the automatically selected background voxels (basis =
DWIs), while the right column shows local estimation using noise maps (basis = noise maps). In A)
and B), the boxplot of 𝑁 inside the phantom for the SENSE/GRAPPA algorithm with a spatial map
of 𝑁 shown in C) and D) computed using the noise maps from the b = 3000 s/mm2 datasets.

deactivated in panel A). Results show that 𝜎𝑔 increases with 𝑅 and is higher when MB = 3
for 𝑅 fixed, even if in theory 𝜎𝑔 should be similar for a given 𝑅 and increasing MB. Panel
C) shows the estimated values of 𝜎𝑔 when using noise maps as the input for 𝑅 = 3 and MB
= 3. As in the synthetic experiments, MPPCA and LANE have the lowest estimates for
𝜎𝑔 with PIESNO and the proposed methods estimating higher values. Since the correct
value is unknown, a reference sample slice of a noise map is also shown. When compared
to values from the measured noise map, estimated values of 𝜎𝑔 are approximately fivefold
lower for MPPCA, four times lower for LANE and around half for the other methods.
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Estimation on the noise maps yields a value of around 𝑁 = 1 for both proposed methods
as seen in panels B) and E), irrespective of the acceleration used. In the case of estimation
using the DWIs, the range of estimated values is larger and increases at acceleration factors
of MB = 2 and 𝑅 = 2 or 3.

A) B)

C) D)

E)

Figure 5.7: Estimation of noise distributions for the scanned phantom datasets inside a small ROI.
Large outliers above the 95th percentile were removed to not skew the presented boxplots. In A), the
estimation of the noise standard deviation 𝜎𝑔 for each method using DWIs (top row) and using noise
maps (bottom row). Each column shows an increasing SENSE factor, where 𝜎𝑔 increases (according
to theory) with the square root of the SENSE factor. The different hues show an increasing multiband
factor, which should not influence the estimation of 𝜎𝑔. For the case MB = 3, there may be signal
leakage to adjacent slices, which would increase the measured values of 𝜎𝑔 even when the estimation
uses only noise maps. In B), boxplots for the values of 𝑁 estimated by both proposed methodologies
for the experiments shown in A). Estimated values using noise maps are always close to 1 on average
while estimations using DWIs seems to be affected by the possible signal leakage inherent to the
use of multiband imaging. In C), an axial slice of a noise map and estimated values of 𝜎𝑔 by all
methods for the case 𝑅 = 3 and MB = 3, which is the highest rate of acceleration from all of the
investigated cases. Note the different scaling between the top and bottom row as MPPCA and LANE
estimates of 𝜎𝑔 are two to three times lower than other methods. In D), a b = 0 s/mm2 image of the
phantom and spatially estimated values of 𝜎𝑔 for MPPCA and LANE. Note how some signal leakage
(orange arrows) is affecting the b = 0 s/mm2 volume due to using MB = 3. In E), location of the
spherical ROI used for the boxplots overlaid on a noise map and spatially estimated values of 𝑁 for
both proposed methods. As less voxels are available near the borders of the phantom, estimating the
noise distributions parameters results in lower precision.
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5.4.3 In vivo datasets

Multiple datasets from a single subject Fig. 5.8 shows the estimated value of 𝜎𝑔 on four
repetitions of the GE datasets for each method as computed inside a brain mask. The values
from a b = 3000 s/mm2 volume (including background) is also shown as a reference for the
values present at the highest diffusion weighting in the dataset. All methods show good
reproducibility, as their estimates are stable across the data. The value of 𝑁 as computed
by our proposed methods is also similar for all datasets with the median at 𝑁 = 0.45 for
the moments and 𝑁 = 0.49 for the maximum likelihood equations. This corresponds to
a half Gaussian distribution as would be obtained by a real part magnitude reconstruction
(Dietrich et al., 2008). However, LANE recovered the highest values of 𝜎𝑔 amongst all
methods with a large variance and a median higher than the b = 3000 s/mm2 values, which
might indicate overestimation in some areas. The median of MPPCA and the proposed
methods are similar, while PIESNO estimates of 𝜎𝑔 are approximately two times lower.
This could indicate that specifying 𝑁 = 1 was incorrect for these datasets, as PIESNO
identified about 10 noise only voxels.

Fig. 5.9 shows an axial slice around the cerebellum and the top of the head which are
corrupted by acquisition artifacts likely due to parallel imaging. Voxels containing artifacts
were automatically discarded by both methods, preventing misestimation of 𝜎𝑔 and 𝑁 . The
values computed from these voxels also offer a better qualitative fit than assuming a Rayleigh
distribution or selecting non-brain data. We also timed each method to estimate 𝜎𝑔 on one
of the GE datasets using a standard desktop computer with a 3.5 GHz Intel Xeon processor.
The runtime to estimate 𝜎𝑔 (and N) was around 5 seconds for the maximum likelihood
equations, 9 seconds for the moments equations, 11 seconds for PIESNO, 3 minutes for
MPPCA and 18 minutes for LANE.

Estimation with a Connectom dataset Fig. 5.10 shows in A) the estimated values of 𝜎𝑔
inside a brain mask and in B) the values of 𝑁 computed by the proposed methods. Es-
timated values of 𝜎𝑔 vary by an order of magnitude between the different methods. In
the case of MPPCA and LANE, the median of the estimates is higher than the reference
b = 5000 s/mm2 data, while PIESNO and the proposed methods estimate values lower
than the reference and have lower variability in their estimated values. For the estimation
of 𝑁 , recovered values are distributed close to 1 as is expected from an adaptive combine
reconstruction providing a Rician distribution. Values estimated with the maximum likeli-
hood equations have a lower variability than with the moments equations. In C), the top
row shows the b = 5000 s/mm2 volume and spatial maps of 𝜎𝑔 as estimated by MPPCA
and LANE. The bottom row shows voxels identified as pure noise (in light purple) using
the moments, the maximum likelihood equations and PIESNO. Ghosting artifacts are ex-
cluded, but presumably affect estimation using the entire set of DWIs shown in the top
row. Fig. 5.11 shows in A) the signal intensity after applying bias correction (left column)
and after denoising (right column) for each volume ordered by increasing b-value. The top
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A) B)

C)

Figure 5.8: Estimation of the noise profiles on four repetitions of a single subject from a GE scanner.
In A), the baseline signal values of a b = 3000 s/mm2 volume and estimated values of 𝜎𝑔 for all
methods inside a brain mask and B) estimated values of 𝑁 by the proposed methods are shown. Note
that the values for LANE and the b = 3000 s/mm2 volume were truncated at the 99 percentile to
remove extreme outliers. In C), an axial slice of a b = 3000 s/mm2 image from one dataset and the
estimated values of 𝜎𝑔 for MPPCA and LANE. For the proposed methods and PIESNO, a mask of
the identified background voxels (in yellow) overlaid on the data.

Figure 5.9: An axial slice in the cerebellum from one of the GE datasets. Voxels identified in A)
as noise only (yellow) are free of artifacts in a single slice in B) or along the sum of all volumes in
C). In D), the normalized density histogram using the selected voxels from A) (green) fit well a chi
distribution (black dashed lines), while assuming a Rayleigh distribution (red dashed lines) or using
all non brain voxels (orange) leads to a worse visual fit.

row (resp. bottom row) shows the mean (resp. standard deviation) as computed inside a
white and gray matter mask. The mean signal decays with increasing b-value as expected,
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but the standard deviation of the signal does not follow the same trend in the cases of
LANE. After denoising, the mean signal and its standard deviation decays once again as
for the original data. Panel B) shows the average DWI at a given b-value for the original
dataset and after denoising using the noise distribution from each method. Results are sim-
ilar for all methods for the b = 0 s/mm2 datasets, but the overestimation of 𝜎𝑔 by LANE
produces missing values in the gray matter for b = 3000 s/mm2 and b = 5000 s/mm2. In
general, averaging reduces the noise present at b = 0 s/mm2 and b = 1200 s/mm2 while
only denoising is effective at b = 3000 s/mm2 and b = 5000 s/mm2. At b = 5000 s/mm2,
the MPPCA denoised volume is of lower intensity than when obtained by the moments,
maximum likelihood equations or PIESNO. This is presumably due to LANE and MPPCA
estimating higher values of 𝜎𝑔 than the three other methods. Finally, panel C) shows the
absolute difference between the original and the denoised dataset obtained by each method.
At b = 5000 s/mm2, LANE removes most of the signal in the gray matter mistakenly due
to overestimating 𝜎𝑔. Other methods perform comparably well on the end result, despite
estimates of 𝜎𝑔 of different magnitude.
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A) B)

C)

Figure 5.10: Estimation of noise distributions for the Connectom dataset. In A), signal distribution of
the original data and noise standard deviation 𝜎𝑔 for all methods, where data above the 99th percentile
for the b = 5000 s/mm2 volume and LANE were discarded. In B), values of 𝑁 as estimated using the
moments (in red) and by maximum likelihood (in purple). In C) on the top row, a b = 5000 s/mm2

volume and spatial estimation of 𝜎𝑔 as measured by MPPCA and LANE. On the bottom row, voxels
identified as containing only noise (in white) by the moments, maximum likelihood and PIESNO
overlaid on top of the sum of the b = 0 s/mm2 volumes. Note how each algorithm identifies different
voxels, while automatically ignoring voxels belonging to the data or contaminated with signal leakage
from multiband imaging.
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A)

B) C)

Figure 5.11: Bias correction and denoising of the Connectom dataset from the noise distributions
estimated by each method. In A), the left column (resp. right column) shows the result of noncentral
chi bias correction (resp. denoising) on the signal value. The top row (resp. bottom row) shows the
mean (resp. standard deviation) of the signal inside a white and gray matter mask for each volume.
Note how the bias corrected value of LANE goes below 0 (dashed line) due to its high estimation of
𝜎𝑔. After denoising, the standard deviation of the signal decreases as the b-value increases, an effect
which is less noticeable for the bias corrected signal only. However, this effect is less pronounced for
the bias corrected signal only in the case of LANE and MPPCA. In B), spatial maps of the original
data and after denoising (in each column) from averaged datasets at b = 0 s/mm2, b = 1200 s/mm2,
b = 3000 s/mm2 and b = 5000 s/mm2 (in each row) for each method. Note how each b-value
uses a different scale to enhance visualization even though the signal intensity is lower for increasing
b-values. Panel C) shows the difference in percentage between the original data and after denoising
using parameters as estimated by each algorithm.
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5.5 Discussion

We have shown how a change of variable to a Gamma distribution Gamma(𝑁, 1) can be
used to robustly and automatically identify voxels belonging only to the noise distribution.
At each iteration, the moments (Eqs. (5.8) and (5.9)) and maximum likelihood equations
(Eqs. (5.11) and (5.12)) of the Gamma distribution can be used to compute the number of
degrees of freedom 𝑁 and the Gaussian noise standard deviation 𝜎𝑔 relating to the original
noise distribution. Voxels not adhering to the distribution are discarded, therefore refin-
ing the estimated parameters until convergence. One of the advantage of our proposed
methods is that no a priori knowledge is needed from the acquisition or the reconstruction
process itself, which is usually not stored or hard to obtain in a clinical setting. Results
from Section 5.4.1 show that we can reliably estimate parameters from the magnitude data
itself in the case of stationary distributions. For spatially varying distributions without par-
allel acceleration, the proposed methods achieve an average relative error of approximately
10% when estimating 𝜎𝑔, which is equal or better than the other methods compared in
this work. Estimated values of 𝑁 are around the true values, even when 𝜎𝑔 is misestimated.
While these experiments may still be considered simplistic when compared to modern scan-
ning protocols where parallel acceleration is ubiquitous, they highlight that even textbook
cases can lead to misestimation if the correct signal distribution is not taken into account.
Practical tasks taking advantage of the signal distribution such as bias correction (Pieciak et
al., 2018), noise floor removal (Sakaie and Lowe, 2017), deep learning reconstruction with
various signal distributions (Lønning et al., 2019) or diffusion model estimation (Collier
et al., 2018; Landman et al., 2007; Zhang et al., 2012) may be tolerant, but not perform op-
timally, to some misestimation of the noise distribution. See e.g. Hutchinson et al. (2017)
for discussions on the impact of noise bias correction on diffusion metrics in an ex vivo rat
brain dataset.

Effects of misspecification of the noise distribution Experiments with SENSE from Sec-
tion 5.4.1 reveal that using a local estimation with noise maps provides the best estimates
for the proposed methods and PIESNO. MPPCA and LANE perform better when using
DWIs as the input rather than noise maps, but at the cost of a broader range of estimated
values for 𝜎𝑔 and still underperform when compared to the three other methods. This is
presumably because the signal diverges from a Gaussian distribution at low SNR (Gudb-
jartsson and Patz, 1995) and especially in noise maps, leading to a misspecification of its
parameters when the assumed noise distribution is incorrect. Phantom experiments car-
ried with GRAPPA show similar trends except for PIESNO, which overestimates 𝜎𝑔 as
shown in Fig. 5.2. When erroneously fixing 𝑁 = 1, low intensity voxels where 𝜂 > 0 (e.g.
gray matter) may be mistakenly included in the distribution after the change of variables,
leading to overestimation of 𝜎𝑔.

The presence of tissue in voxels used for noise estimation might compromise the ac-
curacy of the estimated distributions as shown in Section 5.4.1. This can be explained by
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the lower number of noise only voxels available to the proposed methods and PIESNO and
to difficulty in separating the signal from the noise for MPPCA and LANE at low SNR.
Using measured noise maps is not a foolproof solution as by definition they set 𝜂 = 0,
while the (unknown) noiseless signal from tissues is 𝜂 > 0. As the noise distribution may
depend on 𝜂 (Aja-Fernández, Vegas-Sánchez-Ferrero, et al., 2014), this means that its pa-
rameters (e.g. from a GRAPPA reconstruction) will be inherently different than the one
estimated from noise maps. This effect can be seen in Fig. 5.6, where the estimated values
of 𝑁 from noise maps and DWIs are close to 1 for SENSE as expected in theory. For
GRAPPA, they are either overestimated and underestimated in regions of the phantom
and overestimated in background regions as 𝑁 locally depends on 𝜂. Accurate estimation
of 𝜎𝑔 and 𝑁 over signal regions still remains an open challenge. Nevertheless, the median
of the estimated distribution of 𝜎𝑔 is closer to the true distribution when using noise maps
than when using DWIs for the proposed methods. Such noise map measurements could
therefore provide improved signal distribution estimation for, e.g. body or cardiac imaging,
where no intrinsic background measurements are available.

Effects of parallel imaging and multiband in a phantom Section 5.4.2 presented results
from a scanned phantom using SENSE coupled with multiband imaging. While no ground
truth is available, a SENSE acceleration should provide a Rician signal distribution (𝑁 =
1) and 𝜎𝑔 should increase with

√
𝑅 (Aja-Fernández, Vegas-Sánchez-Ferrero, et al., 2014).

Fig. 5.7 shows that for a common SENSE factor, all values of 𝜎𝑔 estimated with MB = 3
are larger than at lower factors. The use of multiband imaging should not influence the
estimation of 𝜎𝑔 as it only reduces the measured signal, and not the noise component unlike
SENSE does. Indeed, estimated values of 𝜎𝑔 are stable until MB = 3 or 𝑅 = 2 and MB =
2 is used; this is possibly due to signal leakage and aliasing signal from multiband folding
over from adjacent slices with higher factors (Barth et al., 2016; Todd et al., 2016). Noise
maps are less affected by this artifact, which is already present when 𝑅 = 2 and MB = 2, as
adjacent voxels have low values, similarly to unaffected voxels. However, leaking signal in
DWIs might impact parameters estimation as it can be interpreted as an increase in SNR
and therefore a lower noise contribution than expected. Estimation of 𝜎𝑔 is also increasing
approximately with

√
𝑅 for all methods as expected (Aja-Fernández, Vegas-Sánchez-Ferrero,

et al., 2014). While we can not quantify these results, this follows the synthetic experiments
with SENSE shown in Fig. 5.4, where PIESNO and the proposed methods were more
precise in estimating 𝜎𝑔 from noise maps.

In the case of estimation using DWIs as input, this expected increase in 𝜎𝑔 for increasing
SENSE factor is less obvious e.g. LANE estimates of 𝜎𝑔 decrease from 𝑅 = 2 to 𝑅 = 1
for the no multiband case. As MPPCA and LANE also estimate 𝜂, it could explain the
larger variance of 𝜎𝑔 as 𝜂 fundamentally depends on the microstructural content of each
voxel, which is complex and subject to large spatial variations, e.g. notably across DWIs.
This also means that estimation over DWIs is susceptible to signal leakage, which would
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explain the increased estimated values of 𝜎𝑔 for MB = 2 and MB = 3 for a given SENSE
factor. In the noise maps, we have observed that MPPCA and LANE estimated 𝜂 > 𝜎𝑔 in
all cases (results not shown). Overestimating the true value of 𝜂 = 0, which is an implicit
assumption in PIESNO and the proposed methods, could explain underestimation of 𝜎𝑔
when using noise maps. This overestimation of 𝜂 in turn leads to lower estimates of 𝜎𝑔.
The use of multiband and the inherent signal leakage at high factors could explain this
overestimation of 𝜂 and underestimation of 𝜎𝑔 for all tested cases. In the case of SENSE,
the proposed methods estimated approximately 𝑁 = 1 in all cases, suggesting robustness
to multiband artifacts.

Estimation of noise distributions for in vivo datasets To complement earlier sections,
two datasets acquired on different scanners combining parallel and multiband imaging were
analyzed in Section 5.4.3. Fig. 5.8 shows that assuming a Rician distribution with 𝑁 = 1
can prove inadequate in some situations. The four repetitions of a single subject acquired
on a GE scanner point towards a half Gaussian distribution instead as evidenced by the
computed values of 𝑁 around 0.5. This is further evidenced by the low number of voxels
(less than 10) detected by PIESNO while assuming 𝑁 = 1. In the preliminary results of
our MICCAI submission (St-Jean, De Luca, Viergever, et al., 2018), using 𝑁 = 0.5 for
PIESNO gave similar results to the proposed methods, suggesting the departure of the data
from a pure Rician distribution. Additionally, Fig. 5.9 shows that those voxels identified
automatically as pure noise also adhere closer to a chi distribution than a Rayleigh distribu-
tion (where 𝜂 = 0 in both cases). Considering the whole distribution of the data, which is
contaminated by artifacts, would also lead to a different distribution. Even if local methods
can consider spatially varying noise profile, the local estimation of 𝜎𝑔 will invariably be
affected whenever those same artifacts repeat over the data. This introduces a compromise
between avoiding artifacts at the cost of reduced spatial specificity and local methods which
may not be able to exclude artifacts, but provide local estimations of 𝜎𝑔. Measurements
from noise maps, if available, could therefore offer a middle ground if 𝑁 is low or does not
depend locally on the coil geometries (e.g. SENSE or homodyne reconstruction) as shown
in Section 5.4.1.

Fig. 5.10 shows a large range of estimates for 𝜎𝑔 across methods. In particular, the
moments and maximum likelihood equations estimate smaller values of 𝜎𝑔 than MPPCA
and LANE, but larger than PIESNO, while still recovering values of 𝑁 close to 1 and
successfully discard voxels contaminated by multiband artifacts. The correct value of 𝜎𝑔
most likely sits between these two results as parallel MRI produces spatially varying noise
profile, which is higher in the center and not fully captured by the background signal,
but the local estimation methods also overestimated 𝜎𝑔 in our synthetic simulations. In
panel A), MPPCA and LANE estimates of 𝜎𝑔 with DWIs are likely affected by multiband
artifacts, as the median is larger than the signal level at b = 5000 s/mm2. This indicates
a possible overestimation as 𝜎𝑔 should be lower than the measured signal at the highest

136



5.6. Conclusions

b-value. For PIESNO and the proposed methods, the median 𝜎𝑔 is lower than the median
of the reference b = 5000 s/mm2 data. An overestimation of 𝑁 could explain the low values
of 𝜎𝑔 estimated by the proposed methods just as misestimation of 𝜂 by MPPCA and LANE
could affect their respective estimate of 𝜎𝑔 by balancing out the misestimated values.

Fig. 5.11 shows the result of each method on a bias correction and denoising task on
the Connectom dataset. In panel A), the standard deviation of the signal (bottom left
panel) is increased after bias correction for LANE (green line) and decreased (around the
same level) for the other methods when compared to the uncorrected data (blue line). The
situation is similar after denoising, but to a lesser extent, while the moments, maximum
likelihood equations and PIESNO follow the same signal level as the unprocessed data on
average. Regarding the mean of the signal itself, LANE is on average lower or close to 0
after bias correction, indicating potential degeneracies due to overestimation of 𝜎𝑔 From
panels B) and C), the results of all methods are visually similar except for LANE (espe-
cially at b = 3000 s/mm2 and b = 5000 s/mm2), indicating that the NLSAM denoising
algorithm treated different values of 𝜎𝑔 in the same way. This is because the optimal regu-
larized solution (which depends on 𝜎𝑔) is piecewise constant (St-Jean, Coupé, et al., 2016;
Tibshirani and Taylor, 2011) and can tolerate small deviations in 𝜎𝑔. Finally, MPPCA,
the moments and maximum likelihood equations and PIESNO perform similarly, even if
they estimated different values of 𝜎𝑔 and 𝑁 , with MPPCA showing slightly lower signal
intensity at b = 5000 s/mm2. This could be due to the bias correction having a larger effect
when 𝜎𝑔 is larger, increasing the standard deviation of the resulting signal. As shown in
panel C), the difference with the original dataset for MPPCA is lower than the proposed
methods or PIESNO, even though the estimated value of 𝜎𝑔 was larger.

5.6 Conclusions

We presented a new, fully automated framework for characterizing the noise distribution
from a diffusion MRI dataset using the moments or maximum likelihood equations of
the Gamma distribution. The estimated parameters can be subsequently used for e.g. bias
correction and denoising as we have shown or diffusion models taking advantage of this
information. This requires only magnitude data, without the use of dedicated maps or
parameters intrinsic to the reconstruction process, which may be challenging to obtain in
practice. The proposed framework is fast and robust to artifacts as voxels not adhering to
the noise distribution can be automatically discarded using an outlier rejection step. This
makes the proposed methods also applicable on previously acquired datasets, which may
not carry the necessary information required by more advanced estimation methods. Ex-
periments using parallel MRI and multiband imaging on simulations, an acquired phantom
and in vivo datasets have shown how modern acquisition techniques complicate estimation
of the signal distribution due to artifacts at high acceleration factor. This issue can be
alleviated with the use of noise only measurements or by limiting the acceleration factor
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to prevent signal leakage. Moreover, different vendors implement different default recon-
struction algorithms which leads to different signal distributions, challenging the strategy
of assuming a Rician distribution or approximations of 𝑁 based on the physical amount of
channels in the receiver coil. We also have shown how signal bias correction and denoising
can tolerate some misestimation of the noise distribution using an in vivo dataset. Note-
worthy is that the theory we presented also applies to any other MRI weighting using large
samples of magnitude data (e.g. functional MRI, dynamic contrast enhanced MRI). This
could help multicenter studies or data sharing initiatives to include knowledge of the noise
distribution in their analysis in a fully automated way to better account for inter-scanner
effects.

5.7 Appendix

5.7.1 Estimating parameters of the Gamma distribution

Estimation using the method of moments For any given distribution, we can estimate
its parameters by relating the samples and the theoretical expression of its moments. The
Gamma distribution is parametrized as Gamma(𝛼, 𝛽) and has a probability distribution
function of

pdf(𝑡|𝛼, 𝛽) = 𝑡𝛼−1

Γ(𝛼)𝛽𝛼 exp (−𝑡/𝛽)𝑑𝑡 (5.15)

with 𝑡, 𝛼, 𝛽 > 0 and Γ(𝑥) the gamma function. The first moments are analytically given by
(Chap. 5 Papoulis, 1991; Weisstein, 2017).

𝜇𝑔𝑎𝑚𝑚𝑎 = 𝛼𝛽, 𝜎2
𝑔𝑎𝑚𝑚𝑎 = 𝛼𝛽2, (5.16)

In this paper, the Gamma distribution parameters are Gamma(𝛼 = 𝑁, 𝛽 = 1) after
the change of variable 𝑡 = 𝑚2/(2𝜎2

𝑔) for our particular case. Since we have 𝛽 = 1, this
leads to a special case where the mean and variance are equal with a value of 𝛼 = 𝑁
and can be expressed only in terms of the magnitude signal 𝑚. For simplicity, we will
only use the mean 𝜇𝑔𝑎𝑚𝑚𝑎 and variance 𝜎2

𝑔𝑎𝑚𝑚𝑎 to estimate the required parameters 𝑁
and 𝜎2

𝑔, but higher order moments could also be used. However, in practice, they might
accumulate numerical errors due to the higher powers involved and are not used here since
two equations are enough to estimate the two parameters. Starting from the analytical
expression given by Eq. (5.16), we have for the special case Gamma(𝑁, 1)

𝜇𝑔𝑎𝑚𝑚𝑎 = 𝛼, 𝜎2
𝑔𝑎𝑚𝑚𝑎 = 𝛼 (5.17)
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Which we can compute using the sample mean and sample variance formulas such that

𝛼 = 1
𝐾

𝐾
∑
𝑘=1

𝑡𝑘 = 1
𝐾

𝐾
∑
𝑘=1

𝑡2
𝑘 − ( 1

𝐾
𝐾

∑
𝑘=1

𝑡𝑘)
2

(5.18)

Substituting the equation for the moments in terms of 𝑡 = 𝑚2/2𝜎2
𝑔, we obtain

1
𝐾

𝐾
∑
𝑘=1

𝑚2
𝑘

2𝜎2
𝑔

= 1
𝐾

𝐾
∑
𝑘=1

( 𝑚2
𝑘

2𝜎2
𝑔

)
2

− ( 1
𝐾

𝐾
∑
𝑘=1

𝑚2
𝑘

2𝜎2
𝑔

)
2

(5.19)

⇒ 1
2𝐾𝜎2

𝑔

𝐾
∑
𝑘=1

𝑚2
𝑘 = 1

4𝐾𝜎4
𝑔

𝐾
∑
𝑘=1

𝑚4
𝑘 − 1

4𝐾2𝜎4
𝑔

(
𝐾

∑
𝑘=1

𝑚2
𝑘)

2

(5.20)

⇒
𝐾

∑
𝑘=1

𝑚2
𝑘 = 1

2𝐾𝜎2
𝑔

⎛⎜
⎝

𝐾
𝐾

∑
𝑘=1

𝑚4
𝑘 − (

𝐾
∑
𝑘=1

𝑚2
𝑘)

2
⎞⎟
⎠

(5.21)

⇒ 2𝐾𝜎2
𝑔 =

𝐾 ∑𝐾
𝑘=1 𝑚4

𝑘 − (∑𝐾
𝑘=1 𝑚2

𝑘)
2

∑𝐾
𝑘=1 𝑚2

𝑘
(5.22)

⇒ 𝜎𝑔 = 1√
2𝐾

√√√√
⎷

𝐾 ∑𝐾
𝑘=1 𝑚4

𝑘 − (∑𝐾
𝑘=1 𝑚2

𝑘)
2

∑𝐾
𝑘=1 𝑚2

𝑘
(5.23)

⇒ 𝜎𝑔 = 1√
2

√√√
⎷

∑𝐾
𝑘=1 𝑚4

𝑘
∑𝐾

𝑘=1 𝑚2
𝑘

− 1
𝐾

𝐾
∑
𝑘=1

𝑚2
𝑘 (5.24)

Therefore, it is possible to estimate the Gaussian noise standard deviation using Eq. (5.24)
and the values of magnitude data 𝑚𝑘, assuming that the voxels considered here do not
contain any object signal. With the value of the noise variance 𝜎2

𝑔 now known, going back
to the original Gamma distribution Gamma(𝛼 = 𝑁, 𝛽 = 1) yields the number of coils 𝑁
as previously shown by Eq. (5.9)

𝑁 = 𝛼 = 𝜇𝑔𝑎𝑚𝑚𝑎 = 1
2𝐾𝜎2

𝑔

𝐾
∑
𝑘=1

𝑚2
𝑘 (5.25)

Estimation using maximum likelihood equations An alternative to the method of mo-
ments to estimate parameters from a given distribution is to solve the equations derived
from its likelihood function for each unknown parameter. Given a set of observed data,
maximizing the likelihood function from a known distribution (or equivalently, the log
of the likelihood function) yields a set of equations to estimate its parameters. For the
Gamma(𝛼, 𝛽) distribution, maximizing the log likelihood by equating the partial deriva-
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tive to 0 for each parameter yields (Thom, 1958)

1
𝐾𝛽

𝐾
∑
𝑘=1

𝑡𝑘 − 𝛼 = 0 (5.26)

log(𝛽) + 𝑑
𝑑𝛼 log(Γ(𝛼)) − 1

𝐾
𝐾

∑
𝑘=1

log(𝑡𝑘) = 0 (5.27)

Since we have 𝛼 = 𝑁 and 𝛽 = 1, in this special case Eq. (5.26) is the same as Eq. (5.25).
Combining Eqs. (5.26) and (5.27) yields an implicit equation to estimate 𝜎𝑔, which can

be written as

𝑓(𝜎𝑔) = 𝜓 ( 1
2𝐾𝜎2

𝑔

𝐾
∑
𝑘=1

𝑚2
𝑘) − 1

𝐾
𝐾

∑
𝑘=1

log(𝑚2
𝑘) + log(2𝜎2

𝑔) = 0 (5.28)

𝑓 ′(𝜎𝑔) = 1
𝐾𝜎3

𝑔
[𝜓′ ( 1

2𝐾𝜎2
𝑔

𝐾
∑
𝑘=1

𝑚2
𝑘)

𝐾
∑
𝑘=1

𝑚2
𝑘 − 2𝐾𝜎2

𝑔] = 0 (5.29)

and Eq. (5.27) can be rewritten as an implicit equation of 𝑁

𝑓(𝑁) = 𝜓(𝑁) − 1
𝐾

𝐾
∑
𝑘=1

log(𝑚2
𝑘/2𝜎2

𝑔) = 0 (5.30)

𝑓 ′(𝑁) = 𝜓′(𝑁) = 0 (5.31)

where 𝜓(𝑥) = 𝑑
𝑑𝑥 log(Γ(𝑥)) is the digamma function and 𝜓′ is the derivative of 𝜓, called

the polygamma function. Eqs. (5.29) and (5.31) can be solved numerically using Newton’s
method provided we have a starting estimate 𝑥0. The update rule for Newton’s method at
iteration 𝑛 is therefore

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑓 ′(𝑥𝑛) (5.32)

For the first iteration, a starting estimate 𝑥0 to approximate the solution is needed. For
Eq. (5.29), we use 𝑥0 = 𝜎𝑚𝑁

while a starting estimate for Eq. (5.31) is given by (Minka,
2012) considering 𝑦 = 1

𝐾 ∑𝐾
𝑘=1 log(𝑚2

𝑘/2𝜎2
𝑔).

𝑥0 = 𝜓−1(𝑦) ≈ {exp(𝑦) + 1/2 if 𝑦 ≥ −2.22
−1/(𝑦 + 𝜓(1)) if 𝑦 < −2.22 (5.33)

In practice, we have observed that 5 iterations of Eq. (5.32) were sufficient to reach
|𝑥𝑛 − 𝑥𝑛−1| < 10−13.
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5.7.2 Generalized bias correction

As an application that requires knowledge of both 𝜎𝑔 and 𝑁 , we now present a general
version for non integer values of 𝑁 of the signal bias correction from Koay and Basser
(2006) and Koay, Özarslan, and Basser (2009). The correction factor 𝜉(𝜂|𝜎𝑔, 𝑁) can be
used to obtain 𝜂 from the magnitude measurement 𝑚𝑁 given the values of 𝜎𝑔 and 𝑁 such
that

𝜉(𝜂|𝜎𝑔, 𝑁) = 2𝑁 + 𝜂2

𝜎2
𝑔

− (𝛽𝑁 1𝐹1 (−1/2, 𝑁, −𝜂2

2𝜎2
𝑔

))
2

(5.34)

where 1𝐹1 is Kummer’s function of the first kind. By defining

𝛽𝑁 = √𝜋/2 (𝑁 − 1/2
1/2 ) (5.35)

= √𝜋/2 ( Γ(𝑁 + 1/2)
Γ(3/2)Γ(𝑁)) (5.36)

=
√

2 (Γ(𝑁 + 1/2)
Γ(𝑁) ) (5.37)

where (𝑛
𝑘) is a binomial coefficient, we obtain a generalized version of Eq. (5.34) which

can now be applied for non integer values of 𝑁 , such as in the case of a half Gaussian
signal distribution (𝑁 = 0.5) which occurs when employing half-Fourier reconstruction
techniques (Dietrich et al., 2008). Estimation of 𝜂 is finally done with

𝜂 = √�̂�2 + (𝜉(𝜂|𝜎𝑔, 𝑁) − 2𝑁)𝜎2
𝑔 (5.38)

where �̂� is an estimate of the first moment of a noncentral chi variable and is estimated
from a spherical harmonics fit of order 6 in the present work. Eq. (5.38) can be solved
iteratively w.r.t. 𝜂 until convergence, see (Koay, Özarslan, and Basser, 2009) for further
implementation details.

5.7.3 Automated identification of noise only voxels

This appendix outlines the proposed algorithm and details for a practical implementation.
Our implementation is also freely available at https://github.com/samuelstjean/autodmri (St-
Jean, De Luca, Tax, et al., 2019) and will be a part of ExploreDTI (Leemans et al., 2009).
The synthetic and acquired datasets used in this manuscript are also available (St-Jean, De
Luca, Tax, et al., 2018).
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Algorithm 5.1: Main algorithm to identify voxels belonging to the Gamma dis-
tribution
Data: 4D DWIs data, probability level 𝑝 = 0.05, length of the search interval 𝑙 = 50, 𝑁𝑚𝑖𝑛 = 1,

𝑁𝑚𝑎𝑥 = 12
Result: 𝜎𝑔, 𝑁 , mask of background only voxels
Compute the 𝑚𝑒𝑑𝑖𝑎𝑛 of the whole dataset;
foreach 2D Slice of the 4D dataset do

Compute the upper bound 𝜎𝑔𝑚𝑎𝑥
= median/√2 icdf(𝑁𝑚𝑎𝑥, 1/2);

Compute the search interval Φ = [1𝜎𝑔𝑚𝑎𝑥
/𝑙, 2𝜎𝑔𝑚𝑎𝑥

/𝑙, … , 𝑙𝜎𝑔𝑚𝑎𝑥
/𝑙];

while 𝜎𝑔, 𝑁 not converged do
Compute 𝜆− = icdf(𝛼, 𝑝/2) and 𝜆+ = icdf(𝛼, 1 − 𝑝/2);
foreach 𝜎𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ Φ do

Apply change of variable 𝑡 = 𝑑𝑎𝑡𝑎2

2𝜎2
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

;
Find voxels from the gamma distribution;

mask_current = (𝜆− ≤
𝐾

∑
𝑘=1

𝑡𝑘) ⋂ (
𝐾

∑
𝑘=1

𝑡𝑘 ≤ 𝜆+);

if number of voxels in mask_current > mask then
mask = mask_current;

end
end
Compute 𝜎𝑔 with the voxels inside the mask using Eq. (5.8) or Eq. (5.12);
Compute 𝑁 with the voxels inside the mask using Eq. (5.9) or Eq. (5.11);
Set 𝑁𝑚𝑖𝑛 = 𝑁𝑚𝑎𝑥 = 𝑁 ;
Set Φ = [0.95𝜎𝑔, 0.96𝜎𝑔, … , 1.05𝜎𝑔];

end
end
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Chapter 6. Harmonization of diffusion MRI datasets

Abstract

Diffusion weighted magnetic resonance imaging is a noninvasive imaging tech-
nique that can indirectly infer the microstructure of tissues and provide metrics
which are subject to normal variability across subjects. Potentially abnormal
values or features may yield essential information to support analysis of controls
and patients cohorts, but subtle confounds affecting diffusion MRI, such as those
due to difference in scanning protocols or hardware, can lead to systematic errors
which could be mistaken for purely biologically driven variations amongst sub-
jects. In this work, we propose a new harmonization algorithm based on adaptive
dictionary learning to mitigate the unwanted variability caused by different scan-
ner hardware while preserving the natural biological variability present in the
data. Overcomplete dictionaries, which are learned automatically from the data
and do not require paired samples, are then used to reconstruct the data from a
different scanner, removing variability present in the source scanner in the pro-
cess. We use the publicly available database from an international challenge to
evaluate the method, which was acquired on three different scanners and with
two different protocols, and propose a new mapping towards a scanner agnostic
space. Results show that the effect size of the four studied diffusion metrics is
preserved while removing variability attributable to the scanner. Experiments
with alterations using a free water compartment, which is not simulated in the
training data, shows that the effect size induced by the alterations is also pre-
served after harmonization. The algorithm is freely available and could help mul-
ticenter studies in pooling their data, while removing scanner specific confounds,
and increase statistical power in the process.

Keywords: Diffusion MRI, Harmonization, Scanner variability, Dictionary learning,
Cross-validation, Akaike information criterion
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6.1 Introduction

Diffusion weighted magnetic resonance imaging (dMRI) is a noninvasive imaging technique
that can indirectly infer the microstructure of tissues based on the displacement of water
molecules. As dMRI only offers an indirect way to study, e.g. the brain microstructure,
analysis of dMRI datasets includes multiple processing steps to ensure adequate correction
of acquisition artifacts due to subject motion or eddy current induced distortions, amongst
others (Tournier et al., 2011). Quantitative scalar measures of diffusion can be extracted
from the acquired datasets, such as the apparent diffusion coefficient (ADC) or fractional
anisotropy (FA) as computed from diffusion tensor imaging (DTI) (Basser, Mattiello, et al.,
1994; Basser and Pierpaoli, 1996), with a plethora of other measures and diffusion models
nowadays available (Assemlal et al., 2011; Tournier, 2019). These measures are subject to
normal variability across subjects and potentially abnormal values or features extracted from
dMRI datasets may yield essential information to support analysis of controls and patients
cohorts (Johansen-Berg and Behrens, 2009; Jones, 2011).

As small changes in the measured signal are ubiquitous due to differences in scanner
hardware (Sakaie et al., 2018), software versions of the scanner or processing tools (Gronen-
schild et al., 2012; Sakaie et al., 2018), field strength of the magnet (Huisman et al., 2006)
or reconstruction methods in parallel MRI and accelerated imaging (Dietrich et al., 2008;
St-Jean, De Luca, et al., 2018), non-negligible effects may translate into small differences
in the subsequently computed diffusion metrics. Subtle confounds affecting dMRI can
even be due to measuring at different time points in the cardiac cycle, leading to changes
in the measured values of pseudo-diffusion over the cardiac cycle (De Luca et al., 2019;
Federau et al., 2013). In the presence of disease, these small variations in the measured
signal are entangled in the genuine biological variability, which is usually the main criterion
of interest to discover or analyze subsequently. This can lead to confounding effects and
systematic errors that could be mistaken for purely biologically driven variations amongst
subjects. To mitigate these issues, large-scale studies try to harmonize their acquisition pro-
tocols across centers to further reduce these potential sources of variability (Duchesne et al.,
2019) or may only use a single scanner without upgrading it for long term studies (Hofman,
Grobbee, et al., 1991; Hofman, Brusselle, et al., 2015). The stability brought by keeping
the same scanning hardware is however at the cost of potentially missing on improved, more
efficient sequences or faster scanning methods becoming common in MRI (Feinberg et al.,
2010; Larkman et al., 2001; Lustig et al., 2007). Even by carefully controlling all these
sources of variability as much as possible, there still remain reproducibility issues between
scanners of the same model or in scan-rescan studies of dMRI metrics (Kristo et al., 2013;
Magnotta et al., 2012; Vollmar et al., 2010). Over the years, many algorithms have been
developed to mitigate the variability attributed to non-biological effects in dMRI, e.g. in
order to combine datasets from multiple studies and increase statistical power, see e.g. (Tax
et al., 2019; Zhu et al., 2019) for reviews. Common approaches consist in harmonizing
the raw dMRI datasets themselves (Cetin Karayumak et al., 2019; Mirzaalian et al., 2016)
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or the computed scalar metrics (Fortin et al., 2017; Pohl et al., 2016) to reduce variability
between scanners. Recently, a dMRI benchmark database containing ten training subjects
and four test subjects datasets acquired on three scanners with two acquisition protocols
was presented at the computational diffusion MRI (CDMRI) 2017 challenge (Tax et al.,
2019). The publicly available CDMRI database was previously used to compare five harmo-
nization algorithms, including a previous version of the algorithm we present here, which
we use for evaluation.

In this work, we propose a new algorithm based on adaptive dictionary learning to
mitigate the unwanted variability caused by different scanner hardware while preserving
the natural biological variability present in the data. Expanding upon the methodology
presented in St-Jean, Coupé, et al. (2016) and St-Jean, Viergever, et al. (2017), overcom-
plete dictionaries are learned automatically from the data for a given target scanner with
an automatic tuning of the regularization parameter. These dictionaries are then used to
reconstruct the data from a different source scanner, removing variability present in the
source scanner in the process. Mapping across different spatial resolutions can be obtained
by adequate subsampling of the dictionary. Additional experiments beyond the original
challenge show that the harmonization algorithm preserves alterations made on the test
subjects while removing scanner variability, but without altering the training datasets, by
mapping all the datasets towards a global “scanner space”. The algorithm does not require
paired datasets for training, making it easy to apply for hard to acquire datasets (e.g. pa-
tients with Alzheimer’s, Parkinson’s or Huntington’s disease) or when pooling datasets from
unrelated studies that are acquired in separate centers. This makes our proposed method
readily applicable for pre-existing and ongoing studies that would like to remove variability
caused by non-biological or systematic effects in their data analyzes.

6.2 Theory

6.2.1 The dictionary learning algorithm

Dictionary learning (Elad and Aharon, 2006; Mairal, Bach, Ponce, and Sapiro, 2010) aims
to find a set of basis elements to efficiently approximate a given set of input vectors. This
formulation optimizes both the representation 𝐃 (called the dictionary or the set of atoms)
and the coefficients 𝜶 of that representation (called the sparse codes) as opposed to using
a fixed basis (e.g. Fourier, wavelets, spherical harmonics). A dictionary can be chosen to
be overcomplete (i.e. more column than rows) as the algorithm is designed to only select
a few atoms to approximate the input vector with a penalization on the ℓ1-norm of 𝜶
to promote a sparse solution. Applications in computer vision with the goal to reduce
visual artifacts include demosaicking (Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009),
inpainting (Mairal, Bach, Ponce, and Sapiro, 2010) and upsampling (Yang, Wang, et al.,
2012; Yang, Wright, et al., 2010) amongst others.
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In practice, local windows are used to extract spatial and angular neighborhoods of dif-
fusion weighted images (DWIs) to create the set of vectors required for dictionary learning
as in St-Jean, Coupé, et al. (2016). This is done by first extracting a small 3D region from
a single DWI, which we now refer to as a patch. To include angular information, a set of
patches is taken at the same spatial location across DWIs in an angular neighborhood (as
defined by the angle between their associated b-vector on the sphere). This considers that
patches from different DWIs at the same spatial location, but which are in fact not too far
on the sphere, exhibit self-similarity that can be exploited by dictionary learning. Once
this process is done, every set of patches is concatenated to a single vector 𝐗. All of these
vectors 𝐗𝑛 are then put in a 2D matrix Ω = {𝐗1, … , 𝐗𝑛, …}, where 𝑛 denotes one of the
individual set of patches.

Once the set of patches Ω has been extracted, 𝐃 can be initialized by randomly selecting
𝑁 vectors from Ω (Mairal, Bach, Ponce, and Sapiro, 2010). With this initial overcomplete
dictionary, a sparse vector 𝜶𝑛 can be computed for each 𝐗𝑛 such that 𝐃 is a good approx-
imation to reconstruct 𝐗𝑛, that is 𝐗𝑛 ≈ 𝐃𝜶𝑛. This initial approximation can be refined
iteratively by sampling randomly 𝑁 new vectors 𝐗𝑛 ∈ Ω and updating 𝐃 to better approx-
imate those vectors. At the next iteration, a new set 𝐗𝑛 ∈ Ω is randomly drawn and 𝐃 is
updated to better approximate this new set of vectors. This iterative process can be written
as

arg min
𝐃,𝜶

1
𝑁

𝑁
∑
𝑛=1

(1
2 ∥𝐗𝑛 − 𝐃𝜶𝑛∥2

2 + 𝜆𝑖 ∥𝜶𝑛∥1) s.t. ∥𝐃.𝑝∥2
2

= 1 (6.1)

with 𝜶𝑛 ∈ ℝ𝑝×1 an array of sparse coefficients and 𝐃 the dictionary where each column
is constrained to unit ℓ2-norm to prevent degenerated solutions. 𝜆𝑖 is a regularization
parameter used at iteration 𝑖 (which is further detailed in Section 6.2.2) to balance the
ℓ2-norm promoting data similarity and the ℓ1-norm promoting sparsity of the coefficients
𝜶𝑛. Iterative updates using Eq. (6.1) alternate between refining 𝐃 (and holding 𝜶 fixed)
and computing 𝜶 (with 𝐃 held fixed) for the current set of 𝐗𝑛. As updating 𝜶 needs an
optimization scheme, this can be done independently for each 𝜶𝑛 using coordinate descent
(Friedman et al., 2010). For updating 𝐃, we use the parameter-free closed form update
from Mairal, Bach, Ponce, and Sapiro (2010, Algorithm 2), which only requires storing
intermediary matrices of the previous iteration using 𝜶 and 𝐗𝑛 to update 𝐃. Building
dictionaries for the task at hand has been used previously in the context of diffusion MRI
for denoising (Gramfort et al., 2014; St-Jean, Coupé, et al., 2016) and compressed sensing
(Gramfort et al., 2014; Merlet et al., 2013; Schwab et al., 2018) amongst other tasks. Note
that it is also possible to design dictionaries based on products of fixed basis or adding
additional constraints such as positivity or spatial consistency to Eq. (6.1), see e.g. (Schwab
et al., 2018; Vemuri et al., 2019) and references therein for examples pertaining to diffusion
MRI.
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6.2.2 Automatic regularization selection

Eq. (6.1) relies on a regularization term 𝜆𝑖 which can be different for each set of vectors
𝐗𝑛 at iteration 𝑖. It is, however, common to fix 𝜆𝑖 for all 𝐗𝑛 depending on some heuristics
such as the size of 𝐗𝑛 (Mairal, Bach, Ponce, and Sapiro, 2010), the local noise variance
(St-Jean, Coupé, et al., 2016) or through a grid search (Gramfort et al., 2014). In the
present work, a search through a sequence of candidates {𝜆0, … , 𝜆𝑠, … , 𝜆last}, which is
automatically determined for each individual 𝐗𝑛, is instead employed using either 3-fold
cross-validation (CV) and minimizing the mean squared error or by minimizing the Akaike
information criterion (AIC) (Akaike, 1974; Zou et al., 2007). For the AIC, the number
of non-zero coefficients in 𝜶𝑛 provides an unbiased estimate of degrees of freedom for
the model (Tibshirani and Taylor, 2012; Zou et al., 2007). We use the AIC for normally
distributed errors in least-squares problems from Burnham and Anderson (2004)

𝐴𝐼𝐶𝜆𝑖
= arg min

𝜆𝑠

𝑚 log ⎛⎜⎜
⎝

∥𝐗𝑛 − 𝐃𝜶𝜆𝑠
∥2

2
𝑚

⎞⎟⎟
⎠

+ 2df(𝜶𝜆𝑠
) (6.2)

with 𝑚 the number of elements of 𝐗𝑛. In practice, this sequence of 𝜆𝑠 is chosen auto-
matically on a log scale starting from 𝜆0 (providing the null solution 𝜶𝜆0

= 0) up to
𝜆last = 𝜖 > 0 (providing the regular least squares solution) (Friedman et al., 2010). The
solution 𝜶𝑛 at 𝜆𝑠 is then used as a starting estimate for the next value of 𝜆𝑠+1. The pro-
cess can be terminated early if the cost function Eq. (6.1) does not change much (e.g. the
difference between the solution at 𝜆𝑠 and 𝜆𝑠+1 is below 10−5) for decreasing values of 𝜆𝑠,
preventing computation of similar solutions.

6.3 Methods

6.3.1 Building an optimal representation across scanners

For harmonization based on dictionary learning, all 3D patches of small spatial and angular
local neighborhoods inside a brain mask were extracted from the available training datasets
for a given scanner as done in (St-Jean, Coupé, et al., 2016; Tax et al., 2019). Since different
patch sizes are used depending on the reconstruction task, Sections 6.3.2 and 6.3.5 detail
each case that we study in this manuscript. Only patches present inside a brain mask
were used for computation and reconstruction. These patches were reorganized as column
arrays Ω = {𝐗1, … , 𝐗𝑛, …} with each 𝐗𝑛 ∈ ℝ𝑚×1 represented as vectors of size 𝑚. Each
volume was mean subtracted and each patch 𝐗𝑛 was scaled to have unit variance (Friedman
et al., 2010). Subsequently, features were automatically created from the target scanner
datasets using dictionary learning as detailed in Section 6.2.1. A dictionary 𝐃 ∈ ℝ𝑚×𝑝

was initialized with 𝑝 vectors 𝐗𝑚×1 ∈ Ω randomly chosen, where 𝐃 is set to have twice
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as many columns as rows (i.e. 𝑝 = 2𝑚). Updates using Eq. (6.1) were carried for 500
iterations using a batchsize of 𝑁 = 32. The coefficients 𝜶𝑛 were unscaled afterwards.

Once a dictionary 𝐃 has been computed, the new, harmonized representation (possibly
from a different scanner) can be obtained by computing 𝜶𝑛 for every 𝐗𝑛 ∈ Ω. As 𝐃
was created to reconstruct data from a chosen target scanner, it contains generic features
tailored to this specific target scanner that are not necessarily present in the set of patches
Ω extracted from a different scanner. As such, reconstruction using 𝐃target created from
Ωtarget can be used to map Ωsource towards Ωtarget, that is 𝐗𝑛harmonized

= 𝐃target𝜶𝑛 by using
𝐗𝑛source

and holding 𝐃target fixed while solving Eq. (6.1) for 𝜶𝑛. These specially designed
features from Ωtarget are not necessarily present in Ωsource, therefore eliminating the source
scanner specific effects, as they are not contained in 𝐃target.

Downsampling 𝐃target into 𝐃small can also be used to reconstruct data at a different reso-
lution than initially acquired by creating an implicit mapping between two different spatial
resolutions. This is done by finding the coefficients 𝜶 by holding 𝐃small fixed when solving
Eq. (6.1), but using 𝐃target for the final reconstruction such that 𝐗𝑛harmonized

= 𝐃target𝜶𝑛.
This reconstruction with the full sized dictionary provides an upsampled version of 𝐗𝑛,
the implicit mapping being guaranteed by sharing the same coefficients 𝜶𝑛 for both recon-
structions. A similar idea has been exploited previously for the 3D reconstruction of T1w
images by Rueda et al. (2013) and in diffusion MRI by St-Jean, Viergever, et al. (2017)
in the context of single image upsampling. The general reconstruction process for the
harmonization of datasets between scanners is illustrated in Fig. 6.1. Our implementation
of the harmonization algorithm is detailed in Section 6.7 and also available in both source
form and as a Docker container1 (St-Jean, Viergever, et al., 2019).

6.3.2 Reconstruction tasks of the challenge

For the reconstruction in task 1 (matched resolution scanner-to-scanner mapping), the
dictionary 𝐃target was created using patches of size 3 × 3 × 3 with 5 angular neighbors and
one b = 0 s/mm2 image in each block. Optimization for constructing 𝐃target with Eq. (6.1)
was performed using 3-fold CV and reconstruction of the final harmonized datasets was
done with either CV or minimizing the AIC with Eq. (6.2) in two separate experiments.
The datasets from the GE scanner were reconstructed using the dictionary built from the
Prisma or Connectom scanner datasets for their respective harmonization task. For the
reconstruction in task 2 (spatial and angular resolution enhancement), patches of different
spatial sizes were extracted from the images at higher resolution (patches of size 5×5×5 for
the Prisma scanner and 6 × 6 × 6 for the Connectom scanner) and used for the dictionary
learning algorithm as described in Section 6.2.1. Under the hypothesis that a larger patch is
a good representation for its lower resolution counterpart when downsampled, each column
of the optimized dictionary 𝐃target was resized to a spatial dimension of 3 × 3 × 3 and the

1https://github.com/samuelstjean/harmonization
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Figure 6.1: Schematic representation of the harmonization between scanners with adaptive dictionary
learning. A) Local patches are decomposed into vectors 𝐗𝑛 and a random subset is used to initialize
the dictionary 𝐃. B) A new set of patches is drawn at every iteration and the dictionary is refined
iteratively by alternating updates for the coefficients 𝜶 and the dictionary 𝐃 using Eq. (6.1). C)
After a set number of iterations, this target dictionary 𝐃 can now be used to reconstruct data from
a potentially different dataset. D) A set of coefficients is computed for each patch 𝐗𝑛 of the input
dataset with a source dictionary. For harmonization tasks, the source and target dictionary from step
C) are identical. For upsampling tasks, the source dictionary is a downsampled version of the target
dictionary. E) The harmonized reconstruction for each patch 𝐗𝑛 is obtained by multiplying the target
dictionary 𝐃 and the coefficients 𝜶𝑛.

coefficients 𝜶 computed for this lower resolution dictionary 𝐃small. The patches were finally
reconstructed by multiplying the original dictionary 𝐃target with the coefficients 𝜶. This
creates a set of upsampled patches from the GE scanner that are both harmonized and at the
same spatial resolution as either the Prisma or the Connectom datasets. All reconstruction
tasks were computed overnight on our computing server using 100 cores running at 2.1
GHz. On a standard desktop with a 4 cores 3.5 GHz processor, rebuilding one dataset took
approximately two hours and 30 minutes with the AIC criterion.
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6.3.3 Evaluation framework of the challenge

The original challenge requested from the participants to match the original gradient di-
rections from the source to the target datasets and evaluated various scalar metrics on the
diffusion weighted images. In our original submission, this matching was done with the
truncated spherical harmonics (SH) basis of order 6 (Descoteaux et al., 2007) on the source
dataset and sampling the basis at the gradient directions from the target scanner. In the
present manuscript, we chose instead to evaluate the metrics directly in the original gradient
directions as they are rotationally invariant, saving one interpolation step in the process as
it could potentially introduce unwanted blurring of the data. The metrics used in the orig-
inal evaluation were the apparent diffusion coefficient (ADC) and the fractional anisotropy
(FA) from diffusion tensor imaging (DTI) and the rotationally invariant spherical harmonic
(RISH) features of order 0 (RISH 0) and order 2 (RISH 2) of the SH basis, see Tax et al.
(2019) for additional details. As our evaluation framework is slightly different, we com-
pare our new approach with our initial version of the harmonization algorithm and with a
baseline reference prediction created by trilinear interpolation from the source to the target
scanner in the spirit of the original challenge.

6.3.4 Datasets and experiments

We used the datasets from the MICCAI 2017 harmonization challenge (Tax et al., 2019),
consisting of ten training subjects and four test subjects acquired on three different scan-
ners (GE, Siemens Prisma and Siemens Connectom) using different gradient strength (40
mT/m, 80 mT/m and 300 mT/m, respectively) with two acquisition protocols. Experi-
ments are only reported for the four test subjects, which are later on denoted as subjects
’H’, ’L’, ’M’ and ’N’. The standard protocol (ST) consists of 30 DWIs acquired at 2.4 mm
isotropic with a b-value of b = 1200 s/mm2, 3 b = 0 s/mm2 images for the GE datasets,
4 b = 0 s/mm2 images for the Siemens datasets and TE = 98 ms. Note that the TR is
cardiac gated for the GE datasets while the Siemens datasets both use TR = 7200 ms. The
state-of-the-art (SA) protocol for the Siemens scanners contains 60 DWIs with a b-value
of b = 1200 s/mm2 and 5 b = 0 s/mm2 images. The Prisma datasets were acquired with
a spatial resolution of 1.5 mm isotropic and TE / TR = 80 ms / 4500 ms. The Connec-
tom datasets were acquired with a spatial resolution of 1.2 mm isotropic and TE / TR =
68 ms / 5400 ms. Most of the acquisition parameters were shared for the SA protocol
which are listed in Table 6.1 with full details of the acquisition available in Tax et al. (2019).
Standard preprocessing includes motion correction, EPI distortions corrections and image
registration for each subject across scanners. The SA protocols were additionally corrected
for gradient nonlinearity distortions. These datasets are available upon request2from the
organizers. Fig. 6.2 shows an example of the acquired datasets for a single subject.

2https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/
cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
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Figure 6.2: Example b = 0 s/mm2 images (top row) and b = 1200 s/mm2 images (bottom row)
for a single subject acquired on the three scanners after preprocessing. The standard protocol (ST)
is shown on the left and the state-of-the-art protocol (SA) is shown on the right. Note that the
challenge asked participants to harmonize the GE ST protocol towards the two other scanners, but no
SA protocol is available for the GE scanner. The figure is adapted from Tax et al. (2019), available
under the CC-BY 4.0 license.

Scanner GE 40 mT/m Siemens Prisma 80 mT/m Siemens Connectom 300 mT/m
Protocol Standard (ST) Standard (ST) State-of-the-art (SA) Standard (ST) State-of-the-art (SA)
Sequence TRSE PGSE PGSE PGSE PGSE
# directions per b-value 30 30 60 30 60
TE [ms] 89 89 80 89 68
TR [ms] Cardiac gated 7200 4500 7200 5400
Δ/𝛿 [ms] 41.4/26.0 38.3/19.5 41.8/28.5 31.1/8.5
𝛿1 = 𝛿4/𝛿2 = 𝛿3 [ms] 11.23/17.84
Acquired voxel size [mm3] 2.4 x 2.4 x 2.4 2.4 x 2.4 x 2.4 1.5 x 1.5 x 1.5 2.4 x 2.4 x 2.4 1.2 x 1.2 x 1.2
Reconstructed voxel size 1.8 x 1.8 x 2.4 1.8 x 1.8 x 2.4 1.5 x 1.5 x 1.5 1.8 x 1.8 x 2.4 1.2 x 1.2 x 1.2
SMS factor 1 1 3 1 2
Parallel imaging ASSET 2 GRAPPA 2 GRAPPA 2 GRAPPA 2 GRAPPA 2
Bandwidth [Hz/Px] 3906 2004 1476 2004 1544
Partial Fourier 5/6 – 6/8 6/8 6/8
Coil combine Adaptive combine Sum of Squares Adaptive combine Adaptive combine
Head coil 8 channel 32 channel 32 channel 32 channel 32 channel

Table 6.1: Acquisition parameters of the datasets for the three different scanners. TRSE: twice-
refocused spin-echo, PGSE: pulsed-gradient spin-echo. The table is adapted from Tax et al. (2019).

6.3.5 Simulations beyond the challenge

To further make our proposed harmonization algorithm widely applicable, we designed
additional experiments beyond the challenge to harmonize data towards a common scanner
space. As the MICCAI challenge focused on harmonization of datasets from a source
scanner to a target scanner, the organizers essentially provided matching datasets of all
subjects across all scanners. This data collection would be appropriate, for example, in a
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longitudinal study design with scanner hardware upgrades during the study and subsequent
data analysis. However, such an experimental setup might not be available in practice when
harmonizing datasets from multiple centers or studies where data collection is done only
once per subject e.g. to reduce costs associated with scan time or reduce traveling of the
participants.

The additional experiments consist of harmonizing all the datasets from the ST pro-
tocol at once and predicting their harmonized version using this common basis instead of
creating one dictionary per scanner and per protocol. To ensure that the scanner effects
are properly removed, the test datasets were also altered in a small region with a simu-
lated free water compartment as described in Section 6.3.6. As these altered datasets were
never “seen” by the harmonization algorithm, we can now quantify if the induced effects are
properly reconstructed, as they were not present in the training set in the first place. This
experiment is similar to creating a common space on a larger set of healthy subjects and
finally harmonizing data from the remaining healthy subjects and “patients” towards this
common space. In our current setup, the harmonization algorithm is not aware that the
datasets are in fact from matched subjects and, by design, could also be used on unpaired
training datasets.

6.3.6 Alterations of the original datasets

To create the altered version of the test datasets, a region of 3000 voxels (15 × 20 × 10
voxels) in the right hemisphere was selected at the same spatial location in image space.
Every voxel in the selected region was separately affected by a free water compartment to
mimic infiltration of edema according to

𝑆𝑏altered
= 𝑆𝑏 + 𝑓𝑆0 exp (−𝑏𝐷csf) (6.3)

with 𝑆𝑏altered
the new signal in the voxel, 𝑆𝑏 the original signal in the voxel at b-value 𝑏 and

𝑆0 the signal in the b = 0 s/mm2 image, 𝑓 is the fraction of the free water compartment,
which is drawn randomly for every voxel from a uniform distribution 𝑈(0.7, 0.9) and 𝐷csf =
3 × 10−3 mm2/s is the nominal value of diffusivity for free water (e.g. cerebrospinal fluid
(CSF)) at 37°celsius (Pasternak et al., 2009; Pierpaoli and Jones, 2004). Since the individual
subjects are not aligned, but all scans from a given subject are registered, this introduces
normal variability in terms of the number of white matter and gray matter voxels that would
be affected by edema and their location in a patient subject.

6.3.7 Evaluation metrics

Error and accuracy of predicted metrics We reproduced parts of the analyses conducted
in the original CDMRI challenge from Tax et al. (2019), namely the per voxel error for
each metric as computed by the mean normalized error (MNE) and the voxelwise error.
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Denoting the target data to be reproduced as acquired (Prisma or Connectom scanners)
and the source data to be harmonized as predicted (GE scanner), the MNE is defined as
MNE = |(predicted - acquired)| / acquired and the error is defined as error = predicted -
acquired. The original challenge reports values taken either globally in a brain mask, in
FreeSurfer regions of interest (ROI) and excluding poorly performing regions or the median
value computed in sliding windows. Since the masks of these ROIs were not released for
the challenge, we instead report boxplots of the two metrics using the brain masks from the
challenge as this reports the global median error in addition to the global mean error and
additional quantiles of their distribution. To prevent outliers from affecting the boxplots
(particularly located at the edges of the brain masks), we clip the MNE and error values at
the lowest 0.1% and largest 99.9% for each dataset separately.

Kullback-Leibler divergence as a measure of similarity As the voxelwise difference may
not be fully indicative of the global trend of the harmonization procedure between datasets
(e.g. due to registration errors), we also computed the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951) between the distributions of each harmonized dataset from
the GE scanner and its counterpart from the target scanner for each of the four metrics. The
KL divergence is a measure of similarity between two probability distributions 𝑃(𝑥) and
𝑄(𝑥) where lower values indicate a higher similarity and KL(𝑃 , 𝑄) = 0 when 𝑃(𝑥) = 𝑄(𝑥).
In its discrete form, the Kullback-Leibler divergence is given by

KL(𝑃 , 𝑄) = ∑
𝑘

𝑃𝑘 log ( 𝑃𝑘
𝑄𝑘

) , (6.4)

where 𝑃𝑘 is the “candidate” probability distribution, 𝑄𝑘 the true probability distribution
and 𝑘 represents the number of discrete histogram bins. The measure is not symmetric,
that is KL(𝑃 , 𝑄) ≠ KL(𝑄, 𝑃 ) in general. We instead use the symmetric version of the KL
divergence as originally defined by Kullback and Leibler (1951)

KL𝑠𝑦𝑚 = KL(𝑃 , 𝑄) + KL(𝑄, 𝑃 ). (6.5)

In practice, a discrete distribution can be constructed from a set of samples by binning and
counting the data. By normalizing each bin so that their sum is 1, we obtain a (discrete)
probability mass function. For each metric, the discrete distribution was created with
𝑘 = 100 equally spaced bins. We also remove all elements with probability 0 from either
𝑃𝑘 or 𝑄𝑘 (if any) to prevent division by 0 in Eq. (6.4).

Statistical testing and effect size in the presence of alterations We conducted Student’s
t-test for paired samples for each subject separately between each scanner in the predefined
region of 3000 voxels with simulated changes (Student, 1908). This was done on both
the normal datasets (testing between scanners) and the altered datasets (testing between
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scanners and additionally between the normal and altered datasets). The p-values from the
tests were subsequently corrected for the false discovery rate (FDR) at a level of 𝛼 = 0.05
(Benjamini and Hochberg, 1995). In addition, we also report the effect size of those paired
t-tests as computed by Hedges’ 𝑔 (Hedges, 1981; Lakens, 2013), which we redefine as

𝑔 = |𝜇1 − 𝜇2|
(𝜎1 + 𝜎2)/2 × (1 − 3

4(𝑛1 + 𝑛2) − 9) , (6.6)

where 𝜇𝑖, 𝜎𝑖 and 𝑛𝑖 are the mean, the standard deviation, and the size of sample 𝑖, respec-
tively. A value of 𝑔 = 1 indicates that the difference between the means is of one standard
deviation, with larger values indicating larger effect sizes as reported by the difference in
the group means. In the original definition of Hedges (1981), 𝑔 is not enforced to be pos-
itive. We instead report the absolute value of 𝑔 as we do not know a priori which mean is
larger than the other, but are only interested in the magnitude of the effect rather than its
sign. With this definition, values of 𝑔 reported for the test between a given subject for two
different scanners which are lower than the reference method indicate an improvement by
removing scanner specific effects. On the other hand, similar values of 𝑔 between the refer-
ence and the harmonized dataset for a given subject and its altered counterpart on the same
scanner indicates preservation of the simulated effects as it is the only difference between
these two datasets by construction.

6.4 Results

6.4.1 Results from the challenge

Mapping between scanners for matched acquisition protocols Fig. 6.3 shows the KL
symmetric divergence as presented in Section 6.3.7 for the standard protocol. In general,
the baseline has a higher KL value than the other methods on the Connectom scanner. The
CV based method is generally tied or outperforms the AIC based method. For the Prisma
scanner, results show that the AIC performs best with the CV based method following the
baseline reference. In the case of the ADC metric, our initial algorithm outperforms the
three other methods for some subjects.

Fig. 6.4 shows the distribution (as boxplots) in the absolute mean normalized error
and mean error of the four metrics for the standard protocol. The MNE is almost tied
or slightly higher for the baseline method than the alternatives for both scanners. For the
FA and RISH 2 metrics, the baseline error is tied or larger than the other methods. For
the voxelwise error, all methods underestimate the ADC and overestimate the RISH 0
on average while the FA and RISH 2 metrics show a different pattern depending on the
scanner. For the Connectom scanner, the CV based method generally has an average error
around 0 for the FA while the AIC and our initial algorithm generally overestimate the
metric. The baseline is on the other spectrum and generally underestimates the FA. On
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Figure 6.3: KL symmetric divergence (where lower is better) for the harmonization task at the same
resolution between the GE ST datasets and the Connectom ST (top row) or the Prisma ST (bottom
row) datasets on the four test subjects (’H’, ’L’, ’M’ and ’N’). Each metric is organized by column
(ADC, FA, RISH 0 and RISH 2) for the four compared algorithms (AIC in blue, CV in orange, our
initial version of the harmonization algorithm in green and the baseline comparison in red).

the Prisma scanner, the effect is reversed; there is a general overestimation of the FA while
the error committed by the AIC based method is in general close to 0. The RISH 2 error
follows the same pattern as the FA error on both scanners for the four compared methods.

Mapping between scanners across spatial resolutions Fig. 6.5 shows the KL symmetric
divergence for the second task of the challenge, mapping the GE ST protocol datasets to
the SA protocols of the Prisma or Connectom scanners. For the Connectom scanner, the
AIC based algorithm and our initial algorithm, which is also AIC based, performs best in
most cases. The CV based algorithm also outperforms the baseline method for the ADC
and RISH 0 metrics. For the Prisma scanner, the AIC outperforms most of the compared
methods or is tied with the CV. Notably, the baseline ranks second for the FA and RISH 2
metrics, but is the worst performer for the ADC and the RISH 0 metrics.

Fig. 6.6 shows results for the absolute mean normalized error and mean error for all
algorithms on harmonizing the SA protocol. For the Connectom scanner, the baseline
ranks last for most subjects on the isotropy metrics (ADC and RISH 0) while it only
performs slightly better than the CV based algorithm for the anisotropy metrics (FA and
RISH 2). On the Prisma scanner, results are similar for the ADC and RISH 0 metrics.
For the FA metrics, the best performance is obtained with the AIC based method while
the baseline is better for harmonizing the RISH 2 metric for three of the subjects.

Now looking at the mean error, results show that the ADC metric is underestimated
for all methods and on both scanners with the three methods usually outperforming the
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Figure 6.4: Boxplots of the voxelwise mean normalized error (top) and error (bottom) for each
metric, following the same conventions detailed in Fig. 6.3. The black dot shows the mean error and
the dashed line indicates an error of 0, representing a perfect match between the harmonized GE
dataset and the dataset for the target scanner.

baseline comparison. The FA, RISH 0 and RISH 2 metrics are instead overestimated. For
the FA metric, the AIC and our initial algorithm commit less error on average than the
baseline on the Connectom scanner. On the Prisma scanner, only the AIC has an average
error lower than the baseline. All methods perform better or almost equal on average
to the baseline comparison for the RISH 0 metric. The RISH 2 metric shows a scanner
dependent pattern; on the Connectom scanner, the best performing method is our initial
algorithm followed by the AIC based algorithm while on the Prisma scanner, the lowest
error is achieved by the AIC based method.

In general, results show that the isotropy metrics (ADC and RISH 0) are subject to
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Figure 6.5: Symmetric KL divergence (where lower is better) for the harmonization task across
resolution between the GE ST datasets and the Connectom SA (top row) or the Prisma SA (bottom
row) datasets. The organization is the same as previously used in Fig. 6.3.

global scanner effects while the anisotropy metrics (FA and RISH 2) may be subject to
orientation dependent effects. These effects are also likely different for each scanner since
the gradient strength and timings are different, even if the b-values are matched. In these
experiments, the target scanner is untouched and therefore still contains its own scanner
effect when computing the voxelwise error of each harmonization algorithm.

6.4.2 Mapping original and altered datasets towards a common space

In these experiments, alterations were made to the test set as previously described in Sec-
tion 6.3.6. As these altered datasets were never used for training, we can quantify the
removal of scanner effects and the preservation of the alterations by comparing solely the
altered regions with their original counterpart in each subject, free of processing effects.
In these experiments, the baseline comparison is to not process the datasets at all since
the datasets are altered versions of themselves, therefore not requiring any interpolation or
resampling. As these experiments are outside of the challenge’s scope, they are not covered
by our initial algorithm and therefore the “previous” category is not presented in this sec-
tion. Fig. 6.7 shows the original and altered metrics for one subject on the raw data and
after harmonization with the AIC and CV based algorithms and Fig. 6.8 shows the relative
percentage difference between the raw datasets and their harmonized counterpart. We de-
fine the relative percentage difference as difference = 100 × (harmonized - raw) / raw. The
alterations is mostly visible on the b = 0 s/mm2 image while the b = 1200 s/mm2 image is
only slightly affected due to the high diffusivity of the CSF compartment. However, the
differences are visible on the diffusion derived maps, seen as an increase in ADC and a
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Figure 6.6: Boxplots of the voxelwise mean normalized error (top) and error (bottom) of each metric
for the four algorithms. The black dot shows the mean error and the dashed line indicates an error
of 0. The organization follows the conventions of Fig. 6.4.

reduction for the FA, RISH 0 and RISH 2 metrics. Visually, harmonized datasets do not
seem different from their original counterpart, but the difference maps show that small dif-
ferences are present with the CV method generally showing larger differences than the AIC
method. Notably, the anisotropy metrics (FA and RISH 2) are lower after harmonization
while the difference for the isotropy metric (ADC and RISH 0) is distributed around 0.

Fig. 6.9 shows boxplots of the effect size as computed by a paired t-test after harmo-
nization towards a common space for all scanners. Tests were conducted for every subject
between each scanner in addition to the altered versions of the datasets as previously de-
scribed in Section 6.3.7. For the ADC metric, both methods yield a lower effect size on
average than the raw, unprocessed data and preserve the effect size due to the alterations
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Figure 6.7: Examplar slice of subject ’H’ on the GE scanner as original (left half) and altered (right
half) metrics. Only the affected portion of the data (yellow box) is analyzed in paired statistical
testing against the same location in the original dataset. Each column shows (from left to right)
a b = 0 s/mm2 image, a DWI at b = 1200 s/mm2, the FA, ADC, RISH 0 and RISH 2 metrics
with a common colorbar per column. The top row shows the raw data, the middle row shows
the data harmonized using the AIC and the bottom row shows the harmonized data using the CV.
The b = 0 s/mm2 image, the DWI and the ADC map are increased after adding the free water
compartment while the FA, RISH 0 and RISH 2 metrics are instead lower in their altered counterpart.

Figure 6.8: Examplar slice of subject ’H’ on the GE scanner as original (left half) and altered
(right half) metrics. Each column shows (from left to right) a b = 0 s/mm2 image, a DWI at
b = 1200 s/mm2, the FA, ADC, RISH 0 and RISH 2 metrics with a common colorbar per column as
in Fig. 6.7. The top row (resp. the bottom row) shows the relative percentage difference between
the harmonized data using the AIC (resp. the CV) and the raw data.

as shown in the middle row. The RISH 0 metric shows similar behavior with the CV
based method producing an average effect size slightly higher than the raw datasets. Now
looking at the anisotropy metrics (FA and RISH 2), the effect size is reduced or equal on

164



6.4. Results

average in most cases (except for subject ’H’ when only one scan is altered) when scans are
harmonized with the AIC algorithm. The CV based algorithm shows a higher effect size
for harmonization between scans and a lower effect size when both scans are altered. As
we only report the absolute value of the effect size, this is due to both a lower group mean
and group standard deviation than the raw datasets. The harmonization process is likely
only removing scanner effects present in each dataset as the middle row (where only one
of the compared dataset is affected) shows similar reductions in effect size, but is still on
the same magnitude as the raw datasets since the alteration is preserved.

Figure 6.9: Boxplots of Hedges’ g effect size for each metric with the mean value as the black
dot. The raw data is shown in red (no harmonization), the data harmonized with the AIC in blue
and finally the data harmonized with the CV in orange, similarly to the previous figures. The top
row shows the effect size when both datasets are in their original version (None of the datasets are
altered), the middle row when only one of the dataset is altered and the bottom row when both
datasets are altered as indicated on the right of each row. The top and bottom row are only affected
by scanner effects. The middle row shows larger effects size due to one of the compared dataset
being altered in addition to the scanner effects.

Fig. 6.10 shows the effect size, with a 95% confidence interval (CI), for the paired t-
test between the original and altered datasets on each scanner. While Fig. 6.9 showed the
general trend for all results, we instead now focus on the effect size attributable solely to the
alterations we previously induced. Results show that the ADC and RISH 0 metrics have
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the smallest CI, showing the lowest variability in the 3000 voxels in the altered region. All
CI are overlapping and therefore have a 95% chance of containing the true mean effect size
for every case. The FA and RISH 2 metrics have both larger CI, showing larger variability
in their sample values, but are overlapping with the raw datasets CI in most cases. Only
the CV based harmonization method CI is outside the raw datasets CI for two cases. This
shows that the effect size is likely preserved after applying the harmonization algorithm in
most cases since the only source of variability is the effects we induced in that region to
create the altered datasets. Supplementary materials 1 contains the individual effect sizes,
p-values and other intermediary statistics for every tested combination that generated the
boxplots shown in Fig. 6.9.

Figure 6.10: Hedges’ g effect size for each metric between the original and altered datasets on the
same scanner with a 95% CI. The top row shows the effect size between the original and altered
dataset on the GE scanner, the middle row for the Prisma scanner and the bottom row for the
Connectom scanner. Most of the CI are overlapping except for the CV in the cases of subject ’L’ on
the GE scanner and subject ’H’ on the Prisma scanner. This effect size is only due to the alterations
performed in the experiments and is free of any other source of variability, such as registration error
or scanner effects.
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6.5 Discussion

6.5.1 Reducing variability across scanners

We have presented a new algorithm based on dictionary learning to harmonize datasets
acquired on different scanners using the benchmark database from the CDMRI 2017 har-
monization challenge (Tax et al., 2019). The flexibility of the method lies in its ability to
adapt the regularization parameter 𝜆𝑖 automatically to each subset of training examples in
Eq. (6.1), ensuring that the relevant information to reconstruct the data is encoded in the
dictionary 𝐃. Only features deemed important to the reconstruction are stored as the ℓ1
norm on the coefficients 𝜶 encourages a sparse reconstruction and forces most of the coef-
ficients to zero (Candès et al., 2008; Daubechies et al., 2010; St-Jean, Coupé, et al., 2016).
In the reconstruction step, a new value of 𝜆𝑖 is automatically selected for each reconstructed
patch, ensuring that the regularization is tuned uniquely so that the reconstruction matches
the original patch, but using only features found in the target scanner. This is of course
at the cost of additional computations since a least-square problem needs to be solved for
each candidate value 𝜆𝑖, but convex and efficient numerical routines reusing the previous
solution as a starting point can be used to alleviate computational issues (Friedman et al.,
2010). To the best of our knowledge, this is the first case where an automatic search of the
regularization parameter has been used in both stages of the optimization.

For the reconstruction step, we introduced two alternatives to compute 𝜆𝑖 through the
AIC or CV using held out parts of the signal. While other choices are possible, such as
the Bayesian information criterion (Schwarz, 1978), we chose here the AIC for simplicity
and because it is in fact equivalent to leave one out CV in the asymptotic limit (Stone,
1977). Cross-validation was done with a classical approach as done in statistics, predicting
the signal on parts of the current reconstructed patch as opposed to e.g. reconstructing a
completely separate patch with the same value of 𝜆𝑖 as may be done in machine learning.
This could explain why the AIC based method performed better than the CV criterion
for the anisotropy metrics in the SA protocol since the held out data, which is selected at
random for every case, may sometimes unbalance the angular part of the signal because
of the subsampling. The AIC would not be affected as it can access the whole data for
prediction but instead penalizes reconstructions that do not substantially reduce the mean
ℓ2 error and are using too many coefficients—a likely situation of overfitting. This also
makes the AIC faster to compute since there is no need to refit the whole model from the
beginning unlike the CV.

One major advantage of the harmonization approach we presented is that raw datasets
are directly harmonized without the requirement of paired samples during training. In fact,
the data was given at random for the training phase and we mixed patches from all subjects
and all scanners altogether in the additional experiments we described in Section 6.3.5,
preventing overfitting to a particular scanner in the process. While other harmonization
approaches have been developed, most of them require paired samples (Cetin Karayumak et
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al., 2019; Mirzaalian et al., 2016) or harmonize only the extracted scalar maps from diffusion
MRI instead (Alexander et al., 2017; Fortin et al., 2017), limiting their applicability in
studies that do not account for these requirements at first in their design. Moreover, it
is not clear if the mapping developed for a particular scalar map is in fact similar between
metrics as scanner effects may behave differently, e.g. isotropy metrics may be subject to
global effects while anisotropy metrics may exhibit orientational bias due to low SNR in
some given gradient directions. We also observed in our experiments that the error for the
ADC and RISH 0 metrics were similar for most methods while the error was larger for the
FA and RISH 2 metrics for the baseline method, which are orientation dependent. This
shows that the “optimal” mapping function could likely be task dependent if one wants to
harmonize directly the scalar maps between scanners, which could complicate interpretation
between studies that are not using a matched number of b-values or gradient orientation.

In the additional experiments, we introduced the idea of creating a neutral “scanner
space” instead of mapping the datasets towards a single target scanner. We also harmonized
datasets that had been altered towards that common space and shown that the induced ef-
fect sizes are preserved while at the same time preserving normal anatomical variability.
This approach has the benefit of removing variability attributable to both scanners, instead
of trying to force the source scanner to mimic variability that is solely attributable to the
target scanner. It is also important to mention here that a good harmonization method
should remove unwanted variability due to instrumentation, all the while preserving gen-
uine anatomical effects as also pointed out previously by Fortin et al. (2017). While this
statement may seem obvious, success of harmonization towards a common space is much
more difficult to quantify than between scanners since we can not look at difference maps
between harmonized datasets anymore. since we can not look at difference maps between
harmonized datasets anymore. As a thought experiment, a harmonization method that
would map all datasets towards a constant value would show no difference between the har-
monized datasets themselves, therefore entirely removing all variability. It would however
commit very large errors when compared against the original version of those same datasets.
From Fig. 6.7, we see that the harmonized datasets are similar to their original version, but
Fig. 6.8 shows that the CV based algorithm has larger relative differences with the data
before harmonization. It is however not obvious if the CV based algorithm is removing
too much variability by underfitting the data or if the AIC based method is not removing
enough, overfitting the data. Fig. 6.10 suggests that the CV criterion might underfit the
data due to the lower effect size, but this could be due to using only 3 fold CV in our
experiments to limit computation time. Results might be improved by using more folds as
the AIC approximates the CV as we have previously mentioned.

6.5.2 Dependence of isotropy and anisotropy metrics on scanning parameters

While it is usually advocated that protocols should use similar scanning parameters as much
as possible to ensure reproducibility, this is not always easily feasible depending on the se-
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quences readily available from a given vendor and differences in their implementations.
Subtle changes in TE and TR influence the measured signal as shown in Fig. 6.11 by
changing the relative T2 and T1 weighting of the measured diffusion signal, respectively.
While dMRI local models are usually applied on a per voxel basis, changes in these weight-
ings will yield different values of the diffusion metrics, which makes comparisons between
scans more difficult as the weighting depends on the different (and unknown) values of T1
and T2 of each voxel (Brown et al., 2014, Chap. 8). Even if these changes are global for
every voxels, matched b-values are not sufficient to ensure that the diffusion time is identi-
cal between scans as changes in TE influence diffusion metrics such as increased FA (Qin
et al., 2009), but this effect may only manifest itself at either long or very short diffusion
times in the human brain (Clark et al., 2001; Kim et al., 2005). Proper care should be
taken to match the diffusion time beyond the well-known b-value, which may not always
be the case if different sequences are used e.g. PGSE on the Siemens scanners and TRSE
on the GE scanner as used in this manuscript. Additional effects due to gradients and
b-values spatial distortions (Bammer et al., 2003) could also adversely affect the diffusion
metrics, especially on the Connectom scanner as it uses strong gradients of 300 mT/m
(Tax et al., 2019). Isotropy metrics are not necessarily free of these confounds as gradients
nonlinearity create a spatially dependent error on the b-values (Paquette et al., 2019). This
could explain the larger mean error for the CV and baseline methods on the Connectom
scanner harmonization task, especially for the anisotropy metrics. While correcting for
these effects is not straightforward, gradient timings should be reported in addition to the
usual parameters (e.g. TE, TR, b-values and number of gradient directions) in studies to
ease subsequent harmonization. Accounting for these differences during analysis could be
done e.g. by using a (possibly mono-exponential) model including diffusion time and pre-
dicting the diffusion metrics of interest at common scanning parameters values between
the acquisitions to harmonize.

6.5.3 Limitations

Limitations of harmonization As Burnham and Anderson (2004) stated, “in a very im-
portant sense, we are not trying to model the data; instead, we are trying to model the
information in the data”. This is indeed the approach taken in the challenge by the par-
ticipants, the four other entries relying on deep learning and neural networks for the most
part with all methods (including ours) optimizing a loss function which considered the
difference between the original and the harmonized dataset. With the rapid rise of the
next generation of deep learning methods such as generative adversarial networks (GAN)
and extensions (Goodfellow et al., 2014), it is now possible to instead model directly the
distribution of the data. This allows generation of datasets from a completely different imag-
ing modality such as synthesizing target CT datasets from source MRI datasets (Wolterink
et al., 2017). However, if proper care is not taken to represent truthfully the distribution
of the data (e.g. not including enough tumor samples in a harmonization task between
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Figure 6.11: Example b = 0 s/mm2 images for the standard protocol (top row) and the state-of-the-
art protocol (bottom row) for a single subject acquired on the three scanners at different combinations
of TE and TR. Note that the b = 0 s/mm2 image for the GE scanner was only acquired at a single
TE with a cardiac gated (CG) TR. The figure is adapted from Tax et al. (2019), available under the
CC-BY 4.0 license.

datasets with pathological data), this can lead to severe issues. Cohen et al. (2018) recently
showed that in such a case, GAN based methods could try to remove the pathology in the
data to match the distribution of healthy subjects that the method previously learned, pre-
cluding potential applications to new datasets or pathological cases not represented “well
enough” in the training set. The same concept would likely apply to systematic artifacts; if
every dataset from a target scanner is corrupted by e.g. a table vibration artifact, it may very
well be possible that a harmonization algorithm will try to imprint this artifact to the source
datasets to match the target datasets. The same remark would apply to our harmonization
algorithm; if systematic artifacts are in the data, the learned dictionary may very well try
to reconstruct these systematic artifacts. However, when rebuilding the source dataset us-
ing this corrupted target dictionary, we expect that the artifact would be mitigated since it
would not appear in the source dataset and hence should not be reconstructed by Eq. (6.1)
as it would penalize the ℓ2 norm part of the cost function. While offering a promising av-
enue, care must be taken when analyzing harmonization methods to ensure that they still
faithfully represent the data as optimal values of the cost functions themselves or “good”
reconstruction of the diffusion metrics only may not ensure this fact (Rohlfing, 2012).

Limitations of our algorithm and possible improvements Our additional experiments
with simulated free water have shown how harmonization can, to a certain extent, account
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for data abnormalities not part of the training set. However, the presence of CSF and the
boundary between gray matter and CSF (or a linear combination of those elements) may
yield enough information for the reconstruction to encode these features in the dictionary.
This can provide new elements that are not used for the reconstruction of normal white
matter but may be useful for the altered data in the experiments. It is not necessarily
true that this property would also be valid for other neurological disorders such as tumors,
especially if their features are not well represented in the training data as we have mentioned
previously in Section 6.5.3. Another aspect that we did not explicitly cover is multishell
data i.e. datasets acquired with multiple b-values, which was in fact part of the following
CDMRI challenge (Ning et al., 2019). Nevertheless, our method can still be used on such
datasets, but would not be aware of the relationship between DWIs beyond the angular
domain. Other approaches to build the dictionary could be used to inform the algorithm
and potentially increase performance on such datasets by explicitly modeling the spatial
and angular relationship (Schwab et al., 2018) or using an adaptive weighting considering
the b-values in the angular domain (Duits et al., 2019) amongst other possible strategies.
Modeling explicitly the angular part of the signal could also be used to sample new gradients
directions directly, an aspect we covered in the original CDMRI challenge by using the
spherical harmonics basis (Descoteaux et al., 2007). Correction for the nature of the noise
distribution could also be subsequently included as a processing step before harmonization
since reconstruction algorithms vary by scanner vendor (Dietrich et al., 2008; St-Jean, De
Luca, et al., 2018), leading to differences between scans due to changes in the noise floor
level (Sakaie et al., 2018). Improvements could also potentially be achieved by considering
the group structure shared by overlapping patches when optimizing Eq. (6.1) (Simon et al.,
2013). While this structure would need to be explicitly specified, optimizing jointly groups
of variables has recently led to massive improvements in other applications of diffusion MRI
such as reduction of false positive connections in tractography (Schiavi et al., 2019).

6.6 Conclusions

In this paper, we have developed and evaluated a new harmonization algorithm to reduce
intra and inter scanner differences. Using the public database from the CDMRI 2017 har-
monization challenge, we have shown how a mapping from one scanner to another can
be constructed automatically through dictionary learning using unpaired training datasets.
This can also be done for different spatial resolutions through careful matching of the spa-
tial patch size used to build the dictionary from the target scanner. We also introduced the
concept of mapping datasets towards an arbitrary “scanner space” and used the proposed
algorithm to reconstruct altered versions of the test datasets corrupted by a free water com-
partment, even if such data was not part of the training datasets. Results have shown that
the effect size due to alterations is preserved after harmonization, while removing variabil-
ity attributable to scanner effects. We also provided recommendation when harmonizing
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protocols, such as reporting the gradient timings to inform subsequent harmonization al-
gorithms that could exploit these values across studies. As perfect matching of scanner
parameters is difficult to do in practice due to differences in vendor implementations, an
alternative approach could be to account for these differences through models of diffusion
using these additional parameters. Nevertheless, as the algorithm is freely available, this
could help multicenter studies in pooling their data while removing scanner specific con-
founds and increase statistical power in the process.

6.7 Appendix: The harmonization algorithm

This appendix outlines the harmonization algorithm in two separate parts. Algorithm 6.1
first shows how to build a target dictionary as depicted in the top part of Fig. 6.1. The
bottom part of the diagram shows how to rebuild a dataset given the dictionary and is
detailed in Algorithm 6.2. Our implementation is also freely available at https://github.

com/samuelstjean/harmonization (St-Jean, Viergever, et al., 2019).

Algorithm 6.1: The proposed harmonization algorithm - building a target dic-
tionary.
Data: Datasets, patch size, angular neighbor
Result: Dictionary 𝐃
Step 1 : Extracting patches from all datasets;
foreach Datasets do

Find the closest angular neighbors;
Create a 4D block with a b = 0 s/mm2 and the angular neighbors;
Extract all 3D patches and store the result in an array Ω;

end
Step 2 : Build the target dictionary;
while Number of max iterations not reached do

Randomly pick patches from Ω;
Solve Eq. (6.1) for 𝜶 with 𝐃 fixed;
Solve Eq. (6.1) for 𝐃 with 𝜶 fixed;

end
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Algorithm 6.2: The proposed harmonization algorithm - reconstruction of the
harmonized data.
Data: Dataset, dictionary
Result: Harmonized dataset
Step 1 : Extracting patches from the dataset to harmonize;
foreach Dataset do

Find the closest angular neighbors;
Create a 4D block with a b = 0 s/mm2 and the angular neighbors;
Extract all overlapping 3D patches and store the result as Ω;

end
if Matching across spatial resolution then

Downsample 𝐃 into 𝐃small spatially before reconstruction ;
else

𝐃small = 𝐃;
end
Step 2 : Find the harmonized patch;
foreach patches ∈ Ω do

Find the coefficients 𝜶 by solving Eq. (6.1) for 𝐃small fixed;
Find the harmonized representation 𝐗 = 𝐃𝜶;

end
foreach patches ∈ Ω do

Put back each patch at its spatial location and average overlapping parts;
end
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- Il nous reste un modèle de l’an passé, c’est sûr yé 1500$ moins cher,
mais vous avez pas le choix des couleurs.
- M’en sacre des couleurs si yé moins cher. Yé quelle couleur?
- Ok, hum, brun avec des barres brunes, le siège est turquoise avec des
télétubbies en relief. Pis en avant s’t’écrit ’vroum vroum pipi boum-
boum’.
- Ben sais-tu j’pense que j’va…
- En lettrage sport.
- On va en prendre un de l’année, hein Mona?

Le gars qui magasine 7
Summary and discussion

7.1 Summary

Through this thesis, we have seen how diffusion MRI can complement anatomical MRI by
providing information about the diffusivity of in vivo tissues in a noninvasive way. By de-
vising adequate biophysical models explaining the measured signal, these diffusivity values
can then be used to produce scalar maps and infer the architecture and abnormalities of the
underlying tissues. Analysis of the statistical properties of the signal (e.g., the moments
and the kurtosis) can also be used to produce scalar maps that are not intrinsically tied to
a particular model but can still reveal abnormalities in the underlying tissues.

Chapter 2 showed how high resolution diffusion MRI datasets acquired on a standard
scanner can be used to improve anatomical accuracy, even though the low signal level as-
sociated with smaller voxels would normally preclude a direct analysis. Through a new
denoising algorithm exploiting spatial and angular redundancy of the multiple volumes
obtained in routine diffusion MRI acquisitions, we have employed a dictionary learning
algorithm coupled with signal bias correction and an iterative ℓ1 reweighting scheme. The
reconstruction naturally discards the unwanted noise associated with low SNR through
using an upper bound on the ℓ2 norm, which depends on the local noise variance. Exper-
iments on synthetic datasets have shown that the error in the recovered diffusion metrics
(such as the FA and the ADC) by the method is lower than the error produced by the com-
pared denoising algorithms. This property of the algorithm qualitatively transferred to in
vivo data, where additional anatomical details and enhanced tractography are easily identifi-
able on a 1.2 mm isotropic dataset when compared to the original, noisy 1.2 mm version or
on a comparable (in terms of acquisition time) 1.8 mm dataset of the same subject. Note
that the lower resolution dataset had an increased SNR and 64 diffusion volumes, whereas
the 1.2 mm dataset only contained 40 diffusion volumes.
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Chapters 3 and 4 presented an enhancement to along-tract types of analysis. Chapter 3
first showed that direct geometrical averaging based on the Cartesian coordinates of metrics
extracted along-tract can lead to a mismatch notably in the presence of splitting (e.g. arcu-
ate fasciculus) or fanning (e.g. corticospinal tract) fiber bundle configurations. Assigning
values using orthogonal cross-sections instead can help to resolve this issue since points are
now assigned locally towards a representative streamline instead of considering their abso-
lute coordinates in space. After extraction of a representative streamline for each subject,
Chapter 4 presented a new algorithm for the realignment of those representative stream-
lines. As tractography and subsequent extraction of bundles of interest are realized on every
subject separately, there is no guarantee that coordinates in the 1D space of analysis are
matching for every subject. By finding a template candidate amongst all subjects, only the
overlapping segments (up to a user-defined threshold) are kept after realignment for further
statistical analysis. We have shown that such a strategy reduces the coefficient of variation
of the metrics of interest (in this case the mean diffusivity, fractional anisotropy and ap-
parent fiber density) in synthetic experiments and on a database of 100 in vivo datasets.
On those same in vivo datasets, experiments inducing alterations on half of the subjects
conducted on realigned profiles helped to uncover the region affected by those alterations,
which was not always possible in the non-realigned case. This conclusion also holds when
the alterations in the extracted scalar values are large and only cover a small region of the
whole tract length.

Chapter 5 brought us back to the acquisition by presenting a new automated method
to estimate the signal distribution from repeated magnitude MRI measurements, such as
the multiple diffusion weighted images required for local modeling in diffusion MRI. The
main advantage of the method lies in the fact that it does not rely on external measure-
ments, such as coil sensitivities or reconstruction matrices, which are usually not recorded
at acquisition time. Multiple experiments on simulated phantoms with different coil sim-
ulations (including two different accelerated parallel imaging algorithms) have shown that
the noise distribution can be recovered successfully without information about the acqui-
sition process. Experiments on an acquired phantom of a water bottle showed that the
method is robust to signal leakage due to multiband imaging as long as the acceleration
factor is not too high i.e. about 3 in our experiments. We also analyzed two in vivo datasets
acquired in two separate centers, including four repetitions of the same subject, which are
publicly available online. Results showed that the proposed method is stable on those four
datasets and identified the expected signal distribution, while at the same time discarding
voxels contaminated by artifacts. The second in vivo dataset also gave results in line with
the expected theoretical signal distribution according to the parallel MRI reconstruction
that was used during the acquisition.

Finally, Chapter 6 presented a new algorithm to harmonize diffusion MRI datasets
acquired with different scanners. Using dictionary learning, we have shown how features
can be automatically extracted from datasets acquired on a target scanner and used to re-

180



7.2. Discussion

construct datasets from a different source scanner, removing variability attributable to both
scanners in the process while preserving anatomical variability. Experiments with a pub-
licly available database showed how the algorithm reduces variability on common diffusion
MRI metrics and can even be used if the spatial resolution of the scanners is not identical
through adequate spatial subsampling of the dictionary. To verify if the removed variability
was not due to genuine anatomical differences, we also generated altered datasets contami-
nated artificially by free water and mimicking edema. The results supported the hypothesis
of the variability originating solely from the scanner as it decreased between scanners while
preserving the effect size when comparing the altered dataset with their original, unaltered
counterpart using paired t-tests on the four studied diffusion metrics. The effect size was,
on average, also in the same 95% confidence interval as the untouched datasets, confirming
that the harmonization process did not remove anatomical variability in its reconstruction
when comparing harmonized versus original datasets.

7.2 Discussion

7.2.1 Theory

Each chapter of this thesis introduced a new method or algorithm to enhance the anal-
ysis and comprehension of diffusion MRI datasets. While the results contained in this
thesis are a good first step, it is obviously not the last stopping point for diffusion MRI
in general. One of the central goals of diffusion MRI is to predict the diffusivity of the
tissues, namely through local models applied in each voxel. While there is no shortage of
said models, there is unfortunately no consensus on one model to use in particular. A few
models are the usual “go to” candidates such as diffusion tensor imaging (DTI) (Basser et
al., 1994), diffusion kurtosis imaging (DKI) (Jensen et al., 2005) and constrained spherical
deconvolution (CSD) (Tournier et al., 2007) as they provide easy to understand metrics or
orientational information, respectively. More advanced choices such as the neurite orienta-
tion dispersion and density imaging (NODDI) (Zhang et al., 2012) or the mean apparent
propagator (MAP) MRI (Özarslan, Koay, Shepherd, et al., 2013) can further provide spe-
cific measures not covered by the earlier models. Interestingly, those four models besides
NODDI are in fact an approximation of the diffusion signal as measured in q-space, with
NODDI instead explicitly modeling the diffusivities using a compartmental model. Never-
theless, the denoising and harmonization methods presented in Chapters 2 and 6 are applied
directly on the DWIs and are therefore compatible with any model of interest. While we
primarily used DTI and CSD throughout this thesis for their stability and ability to work
with single shell datasets, the release of high-quality multishell datasets such as the human
connectome project (HCP) database (Van Essen, Ugurbil, et al., 2012; Van Essen, Smith,
et al., 2013) can use (and benefit from) advanced models (e.g., DKI, MAP MRI) and the
additional information, such as additional scalar maps, which can be extracted using those
models. However, usage of such advanced datasets is not necessarily common outside of
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the circles developing new dMRI methods due to the inherently longer scan times needed
to collect more data and the longer TE required to achieve higher diffusion weighting,
leading to a further decrease in SNR for the higher b-value images (Froeling et al., 2017).

This chicken-and-egg problem leads to conservative usage of DTI in clinical studies, or
even only measuring the ADC by geometrically averaging measurements, as these measures
are robust due to their lower number of parameters. Advanced models are harder to analyze
for the uninitiated scientist and can be subject to numerical issues due to the complexity
and interdependence of the parameter space (Jelescu et al., 2016; Novikov, Veraart, et al.,
2018). To widen the usage of advanced models and their promise of increased specificity,
more work is needed by the diffusion community to validate their usage, applicability and
showcase how they can be used in e.g. diseased population by providing specific biomarkers.
We are not there yet as no consensus in the community exists to suggest a default model to
use, much less on the acquisition strategy required to support such a hypothetical model.
Providing “textbook” acquisition schemes that are agreed upon for a few models could be
a great start to widen their usage, just as it is usually recommended to acquire at least 30
DWIs for DTI acquisitions (Jones and Basser, 2004). Acquiring a lower number of DWIs
is also possible as long as it can support the desired diffusion model (Lebel et al., 2012).
Nevertheless, collecting additional DWIs helps in reducing variability due to measurements,
but the tipping point where acquiring more data only lengthens the acquisition is not always
clear, especially e.g. in the presence of motion, signal dropouts or artifacts as they may
render useless a portion of the collected datasets (Jones, Knösche, et al., 2013; Tax et al.,
2015). The denoising algorithm presented in Chapter 2 of this thesis can however be used
on these single-shell datasets with nothing precluding its application, from a theory point
of view, to more advanced acquisitions. Since the algorithm presented in Chapter 6 also
uses the same foundation, applicability to multishell datasets should also be straightforward,
although some extensions to exploit this new information are discussed in the chapter
itself. This would obviously require further validation to ensure that the improvements
showcased here for single-shell datasets apply as well to multishell datasets. As for the noise
estimation algorithm from Chapter 5, it has already been shown to work on both single- and
multishell datasets. This is because it will automatically identify voxels from the background
distribution, which are similar since the signal is independent of the diffusion weighting in
these regions. While it would indeed be useful to have a version that is additionally valid
over signal regions, the distribution of each and every voxel would be different, especially
across diffusion weighting. Such an extension would be easier to include in the context of
local modeling, as its goal is to explain the measured diffusion signal itself, by replacing the
value of the signal by its desired parametric formulation. It could be possible, for example,
to initialize such an algorithm with the values computed from our proposed algorithm as
a first step and refine the estimation of the signal distribution locally afterward. Finally,
the optimal assignment strategy and realignment algorithm from Chapters 3 and 4 can also
be used with any diffusion model as they come into play after tractography, making them
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both independent of prior choices regarding data processing steps.
Unfortunately, the perfect “press button” acquisition scheme and assorted local model

that tells us everything we would like to know from diffusion MRI with a two minutes
acquisition protocol does not exist yet. While new developments using deep learning may
enable faster imaging (Golkov et al., 2016), there is still prior work to be done in validation
(e.g. in tractography to reduce false positive connections (Maier-Hein et al., 2017)), and in
fundamental theoretical modeling of diffusion MRI (Novikov, Kiselev, et al., 2018), which
may come through new sequences beyond the original 1965 Stejskal-Tanner experiment
(Stejskal and Tanner, 1965).

7.2.2 Recent developments in diffusion MRI

Recently, new developments in diffusion MRI acquisition have highlighted limitations in
the classical Stejskal-Tanner sequence (Westin et al., 2016). Designed under the umbrella
term of multidimensional diffusion MRI, these sequences allow, e.g., measuring the co-
variance of a distribution of diffusion tensors, instead of the classical measures which result
in the average of the distribution over each voxel. Additional information can be obtained
through higher moments of the diffusion propagator, which is not available to the classical
single diffusion encoding sequence (Novikov, Fieremans, et al., 2019). While it may help to
provide more specific information about the macroscopic content of a given voxel through
new metrics such as the micro FA, preliminary results on clinical scanners have shown en-
couraging results in, e.g., differentiating meningioma from glioblastoma. Szczepankiewicz
et al. (2015) have shown that the FA maps were lower for both type of tumors, but the
micro FA map showed that the meningioma exhibited coherent structure, whereas the
glioblastoma did not, resulting in high and low micro FA values, respectively.

The sequence from Szczepankiewicz et al. (2015) was using a gradient strength of 80
mT/m and a voxel size of 3 mm isotropic to preserve acceptable SNR due to the much
larger TE of 160 ms and b-value up to b = 2800 s/mm2 required for the encoding. For
comparison, the experiments from Chapter 2 used a gradient strength of 45 mT/m and a
voxel size of 1.8 mm isotropic with a TE of 63 ms for the baseline scan. Furthermore, the
1.2 mm isotropic sequence still only required a TE of 104 ms while keeping the b-value at
b = 1000 s/mm2. These multidimensional encoding sequences still require stronger diffu-
sion gradients hardware than available on most current clinical scanners (about 40 mT/m)
to achieve an acceptable SNR, but are still fairly new and could be further optimized for ef-
ficiency (Westin et al., 2016). As they also enable access to additional scanning parameters,
these sequences are prime candidates for the harmonization algorithm presented in Chap-
ter 6 if they are to be used for large-scale studies with various scanners and reconstruction
methods. The denoising algorithm from Chapter 2 could also be employed to circumvent
the rather large voxel size and increase the spatial sensitivity of the method, similarly to
the processing used on the high spatial resolution dataset of 1.2 mm isotropic to recover
additional anatomical details which were hidden by the low SNR. The noise estimation
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method from Chapter 5 could also be used to inform the denoising algorithm or even the
model fitting procedure subsequently used in multidimensional diffusion MRI.

A 3 minutes protocol has also recently been presented on a database of 42 patients
with intracranial tumors to measure anisotropic and isotropic kurtosis, bringing these new
developments closer to clinical applications (Nilsson et al., 2019). As orientational infor-
mation required for tractography is, so far, not obtained from these sequences, relying on
other algorithms using multiple b-values such as multi-tissue CSD (De Luca et al., 2019;
Jeurissen et al., 2014) can be used as a substitute since the multidimensional encoding also
typically uses multiple b-values. Combining tractography with these additional covariance
measures of diffusion could be analyzed using the along-tract framework extensions pre-
sented in Chapters 3 and 4 instead of the classical ROI analysis (Nilsson et al., 2019). This
would provide additional information (e.g. for neurosurgical applications) such as the loca-
tion of the affected region in a white matter bundle or even if a tumor is infiltrative or is
instead “pushing back” the white matter structure (Chamberland et al., 2014).

7.2.3 Future directions

While there is recently renewed interest in revisiting the standard pulse sequences used
in diffusion MRI, another aspect worth exploring is the field of numerical methods and
optimization. Indeed, newer models oftentimes require nonlinear optimization due to the
complexity and relationship between their parameters, requiring additional constraints to
increase numerical stability (Novikov, Kiselev, et al., 2018; Novikov, Veraart, et al., 2018).
Recent analytical developments have shown how a single fiber population can be written
as the product of the spherical harmonics (SH) basis and a Legendre polynomial represen-
tation of the kernel for this single fiber population (Novikov, Veraart, et al., 2018). This
leads to a set of nonlinear equations based on the moments with fewer parameters, but
still describing the full single fiber population and the extracellular space around it for each
voxel. Unfortunately, this representation also highlighted a fundamental degeneracy in
the parameter estimation space where parameters are in fact correlated and interdependent,
yielding spurious solutions that are invalid, but still biophysically plausible. Determining
which set of parameters is correct, as it likely varies for each voxel, is currently an active
topic of research.

Representation of the signal using the SH basis has applications in diffusion MRI such
as modeling the orientation distribution function (ODF) (Descoteaux, Angelino, et al.,
2007; Tournier et al., 2007) or the diffusion propagator (Descoteaux, Deriche, et al., 2011;
Özarslan, Koay, and Basser, 2013). These approaches rely on linear algebra, which can be
solved using classical least-squares methods, and scalar maps of interest are subsequently
derived from the coefficients. Explicit products of the SH part with Legendre polynomials
can also be used to model directly the diffusion signal instead of separating the kernel and
ODF (Jespersen et al., 2007). The spherical mean technique (SMT) instead factors out
the ODF by averaging the measurements, enabling quantification of diffusivity of the fiber

184



7.2. Discussion

population without confounds due to dispersion (Kaden et al., 2016). The SMT and the
approach of Jespersen et al. (2007), however, rely on nonlinear optimization, which is prone
to degeneracies and numerical issues since changing one parameter will affect differently
the values of the remaining parameters, in addition to the increased computational burden
when compared to linear methods. However, it may very well be possible to combine these
ideas in a framework that relies on linear optimization, thereby reducing the complexity
and simplifying analysis of the error propagation. The answer to these questions may in
fact come from other domains of research where fitting of exponential data is ubiquitous.
Namely, approaches using a polynomial representation (such as Legendre polynomials) to
fit exponential decays through differential equations (Knisley and Glenn, 1996; Martin et
al., 1994) may offer new insights about the difficulties faced currently in diffusion MRI.
It is possible, using solely the coefficients of the polynomial, to solve a linear system of
equations and obtain the exponential decay rate associated with the original signal. In
the case of diffusion MRI, the 1D signal can be represented as a Legendre polynomial.
Coefficients of the polynomial can be used to derive the diffusivities with a combination of
linear algebra and root finding. Preliminary results (St-Jean, 2019) have shown how this
approach can be used to obtain ADC maps for a two compartments model in the whole
brain in about 2 minutes. This is done on a 1D version of the diffusion signal obtained
by geometrically averaging the DWIs at each b-value. Solving explicitly the same equation
with traditional nonlinear optimization requires about 10 hours and yields visually identical
results. Using the SH basis, this 1D preliminary approach could likely be extended to
also incorporate the ODF since the product of the SH basis and Legendre polynomials
results in another set of Legendre polynomials (Jespersen et al., 2007). This would lead,
in theory, to a per-tissue diffusivity measure (and assorted scalar maps) and ODF, without
the need to fix a per-tissue kernel as is done in spherical deconvolution (De Luca et al.,
2019; Jeurissen et al., 2014). As the process is fully determined once the polynomial
coefficients have been computed, designing time-optimal acquisition schemes regarding
the number of required DWIs and the set of optimal b-values to ensure the stability of the
fitting procedure becomes feasible. This could help widen usage of the concepts discussed
previously since it is both faster than traditional nonlinear fitting and the numerical stability
of the process is easier to understand as only linear sets of equations are involved. Coupled
with multidimensional MRI, these ideas could offer new and promising insights in studying
the brain while reducing the acquisition burden at the scanner and subsequent processing
time to obtain relevant information from diffusion MRI.
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Samenvatting

Dit proefschrift laat zien hoe diffusie MRI een aanvulling kan zijn op anatomische MRI
door informatie te verschaffen over de diffusie van in vivo weefsels op een niet-invasieve
manier. Door geschikte biofysische modellen te ontwikkelen die het gemeten signaal ver-
klaren, kunnen deze diffusie eigenschappen vervolgens worden gebruikt om de architectuur
en afwijkingen van de onderliggende weefsels af te leiden. Analyse van de statistische ei-
genschappen van het signaal (bijvoorbeeld de momenten en de kurtosis van dit signaal) kan
ook worden gebruikt om informatie te verkrijgen die niet intrinsiek gekoppeld is aan een
bepaald model, maar nog steeds afwijkingen in de onderliggende weefsels kan onthullen.

Na het inleidend Hoofdstuk 1, laat Hoofdstuk 2 zien hoe hoge-resolutie diffusie MRI
datasets, verkregen met een klinische scanner, kunnen worden gebruikt om de anatomische
nauwkeurigheid van afgebeelde structuren te verbeteren, ondanks het lage signaalniveau ge-
relateerd aan kleinere voxels, wat een directe analyse uitsluit. Door een nieuwe methode van
ruisonderdrukking, die gebruik maakt van ruimtelijke en angulaire redundantie van infor-
matie van de meerdere diffusie MRI volumes verkregen bij diffusie MRI acquisities, hebben
we een “dictionary learning” algoritme kunnen combineren met signaalbiascorrectie en een
iteratief ℓ1-weging schema. De reconstructie negeert de ongewenste ruis geassocieerd met
lage SNR door gebruik te maken van een limiet op de ℓ2-norm die afhankelijk is van de
lokale ruisvariantie. Experimenten met synthetische datasets tonen aan dat de fout in de
door de methode gevonden diffusiematen (zoals FA en ADC) lager is dan die verkregen uit
de andere algoritmen voor ruisonderdrukking. Deze eigenschap van het algoritme blijkt
ook op te gaan voor isotrope 1.2 mm in vivo data, waarbij meer anatomische details en ver-
beterde tractografie herkenbaar zijn dan in de originele, ruizige versie van de 1.2 mm data
of de vergelijkbare (wat betreft acquisitietijd) 1.8 mm data van dezelfde proefpersoon. De
dataset met lagere resolutie had een verhoogde SNR en 64 diffusie MRI-volumes, terwijl
de 1.2 mm dataset slechts 40 diffusie MRI-volumes bevatte.

Hoofdstukken 3 en 4 presenteren een verbetering van de analyse waarbij langs het
traject van de vezelbundels wordt gekeken. Hoofdstuk 3 toont eerst aan dat directe geo-
metrische middeling op basis van de Cartesiaanse coördinaten van diffusie eigenschappen,
geëxtraheerd langs het pad, kan leiden tot een mismatch, met name in de aanwezigheid
van splitsende (bijvoorbeeld bij de fasciculus arcuatus) of uitwaaierende (bijvoorbeeld bij de
corticospinale vezelbanen) vezelbundelconfiguraties. Door in plaats daarvan orthogonale
doorsneden te gebruiken, kan dit probleem worden opgelost: datapunten kunnen nu lokaal
worden toegewezen aan een representatief pad in plaats van dat hun absolute coördinaten
in de ruimte beschouwd worden.
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Hoofdstuk 4 beschrijft een nieuw algoritme voor de herschikking van representatieve
hersenvezelpaden die niet gealigneerd zijn. Aangezien tractografie en daaropvolgende ex-
tractie van specifieke bundels voor elke persoon afzonderlijk worden gerealiseerd, is er geen
garantie dat coördinaten in de 1D analyseruimte tussen personen overeenkomen. Door het
vinden van een voor alle personen representatief sjabloon, wordt na het aligneren alleen
het overlappend segment (met een drempel door de gebruiker gedefinieerd) bewaard voor
verdere statistische analyse. We tonen met simulaties en een database van 100 personen
aan dat een dergelijke strategie de variatie van de relevante diffusie eigenschappen (e.g.,
gemiddelde diffusie en fractionele anisotropie) vermindert. Met diezelfde in vivo datasets
kunnen we aantonen dat onze methode verschillen tussen groepen kan identificeren, wat
zonder deze correctie niet mogelijk was.

In Hoofdstuk 5 wordt een nieuwe geautomatiseerde methode gepresenteerd die de sig-
naalverdeling van herhaalde magnitude MRI metingen, zoals de meerdere diffusie-gewogen
beelden die nodig zijn voor lokale modellering in diffusie MRI, kan schatten. Het belang-
rijkste voordeel van de methode ligt in het feit dat deze niet afhankelijk is van externe me-
tingen, zoals spoelgevoeligheden of reconstructiematrices, die meestal niet worden geregi-
streerd op het moment van acquisitie. Meerdere experimenten met gesimuleerde fantomen
met verschillende spoelsimulaties (inclusief twee verschillende versnelde parallelle beeldvor-
mingsalgoritmen) tonen aan dat de ruisverdeling met succes kan worden bepaald zonder
informatie over het acquisitieproces. Experimenten met een fantoom van een waterfles
tonen aan dat de methode robuust imperfecties als gevolg van “multiband” beeldvorming
kan signaleren, zolang de versnellingsfactor niet te hoog is, d.w.z. ongeveer 3 in onze expe-
rimenten. We hebben ook twee publiek beschikbare in vivo datasets geanalyseerd die zijn
verkregen in verschillende instituten, waaronder een met vier acquisities van dezelfde per-
soon. De resultaten tonen aan dat de voorgestelde methode stabiel is op deze vier datasets
en de verwachte signaalverdeling identificeert, terwijl voxels die door artefacten zijn aange-
tast, worden weggelaten. De tweede in vivo dataset geeft ook resultaten die overeenkomen
met de verwachte theoretische signaalverdeling volgens de parallelle MRI reconstructie die
werd gebruikt tijdens de acquisitie.

Ten slotte laat Hoofdstuk 6 een nieuw algoritme zien voor het harmoniseren van diffu-
sie MRI datasets die op verschillende scanners zijn verkregen. Met behulp van “dictionary
learning” tonen we aan hoe eigenschappen automatisch kunnen worden geëxtraheerd uit
datasets die zijn verkregen op een specifieke MRI scanner en kunnen worden gebruikt om
datasets van een andere scanner te reconstrueren. Hierbij worden de variaties die aan de
scanners kunnen worden toegeschreven verwijderd, met behoud van de anatomische vari-
aties. Experimenten met een in vivo database laten zien hoe het algoritme de variaties in
diffusie MRI eigenschappen vermindert en zelfs kan worden gebruikt als de ruimtelijke
resolutie van de scanners niet identiek is. Om te controleren of de verwijderde variaties
niet te wijten zijn aan echte anatomische verschillen, hebben we datasets gegenereerd die
kunstmatig zijn aangepast door vrije water diffusie en oedeem na te bootsen. De resulta-
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ten ondersteunen de hypothese dat de verwijderde variaties alleen afkomstig waren van de
reconstructie.
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Résumé

Dans cette thèse, nous avons vu comment l’IRM de diffusion peut complémenter l’IRM
anatomique en présentant de l’information additionnelle concernant la diffusivité des tissus
in vivo de façon non invasive. En développant des modèles biophysiques expliquant le signal,
ces diffusivités peuvent ensuite être utilisées pour inférer l’architecture ou l’anormalité des
tissus sous-jacents. L’analyse des propriétés statistiques du signal (par exemple les moments
ou le kurtosis) peut aussi être utilisée pour obtenir des cartes scalaires, cartes qui ne sont
pas intrinsèquement liées à un modèle particulier, mais peuvent tout de même révéler les
tissus anormaux.

Le Chapitre 2 montra comment une image d’IRM de diffusion à haute résolution
spatiale acquise sur un scanner standard peut être utilisée pour accroître la précision ana-
tomique, même si le ratio signal sur bruit généralement associé avec des voxels plus petits
prévient normalement une analyse directe. Nous avons présenté un nouvel algorithme de
débruitage exploitant la redondance spatiale et angulaire des multiples volumes régulière-
ment acquis en IRM de diffusion, couplant un algorithme d’apprentissage automatique de
dictionnaire combiné à une correction du biais du signal et un processus itératif pondéré de
norme ℓ1. Le processus de reconstruction écarte naturellement le bruit non voulu associé à
un faible ratio signal sur bruit en utilisant une borne sur la norme ℓ2 du signal reconstruit
dépendant de la variance locale du bruit. Les expériences sur des données synthétiques ont
démontré que l’erreur des métriques d’IRM de diffusion (par exemple l’anisotropie frac-
tionnaire ou la diffusivité moyenne) calculée avec l’aide de la méthode proposée est plus
basse que l’erreur commise en utilisant les algorithmes comparés. Cette propriété de l’algo-
rithme est aussi validée qualitativement sur des données in vivo, où l’on retrouve des détails
anatomiques additionnels. On remarque aussi que la tractographie est plus fidèle à la réalité
sur des données à 1.2 mm isotrope lorsque comparée aux données bruitées originales à 1.2
mm ou encore sur des données comparables (en termes de temps d’acquisition) de 1.8 mm
isotrope du même sujet. Nous notons également que les données à plus faible résolution
spatiale avaient un signal ratio sur bruit plus élevé et comprenant 64 volumes d’IRM de
diffusion contre 40 volumes pour les données à 1.2 mm.

Les Chapitres 3 et 4 présentèrent une amélioration au concept d’analyse le long d’un
segment de fibres. Le Chapitre 3 montra en premier lieu que la moyenne géométrique des
coordonnées cartésiennes des métriques extraites peut mener à une disparité, notamment en
présence d’embranchement (par exemple dans le faisceau arqué) ou encore de configuration
en éventail (par exemple le faisceau corticospinal). Une affectation des valeurs utilisant des
plans orthogonaux permet au contraire de résoudre ce problème puisque les points sont

192



désormais assignés localement envers une fibre représentative au lieu de considérer leurs
coordonnées absolues. Après avoir extrait une fibre représentative par sujet, le Chapitre 4
présenta un nouvel algorithme pour réaligner ces fibres représentatives. Puisque la tracto-
graphie et l’extraction des faisceaux de la matière blanche sont réalisées pour chaque sujet
séparément, il n’existe pas de moyen garantissant que les coordonnées de l’espace 1D cor-
respondent pour chaque sujet. En trouvant automatiquement un candidat modèle parmi
tous les sujets disponibles, seulement les portions de segments qui correspondent (selon
un seuil défini par l’utilisateur) sont conservées après le réalignement pour être subséquem-
ment analysées. Nous avons montré que cette stratégie permet de réduire le coefficient de
variation des métriques de diffusion étudiées (diffusivité moyenne, anisotropie fractionnaire
et densité de fibres apparente) avec des expériences synthétiques et avec une base de données
composée de 100 sujets. Sur cette dernière, les expériences où la moitié des sujets avaient
été altérés ont démontré que l’algorithme de réalignement permet de retrouver les régions
affectées par ces mêmes altérations, alors que ce n’était pas toujours possible dans le cas
où les sujets ne sont pas réalignés. Cette conclusion est aussi valide lorsque les altérations
réalisées sur les valeurs scalaires sont majeures et couvrent seulement une petite région du
faisceau complet.

Le Chapitre 5 nous ramena à l’acquisition en présentant une nouvelle méthode pour es-
timer automatiquement la distribution du signal provenant d’une série d’acquisitions d’IRM
de magnitude, tel que les multiples volumes acquis en IRM de diffusion qui sont requis
pour supporter les modèles locaux. L’avantage principal de l’algorithme repose sur le fait
qu’il ne nécessite pas d’information externe, tel qu’une carte de sensibilité de l’antenne ou
une matrice de reconstruction, qui n’est habituellement pas enregistrée lors de l’acquisition.
Des expériences multiples sur des données synthétiques avec un nombre varié de canaux
(incluant deux algorithmes d’accélération parallèle différents) ont démontré que la distribu-
tion du bruit peut être retrouvée efficacement sans nécessiter d’information a priori sur le
protocole d’acquisition. Les expériences réalisées sur les images d’une bouteille d’eau mon-
trèrent que la méthode est robuste aux contaminations du signal causées par l’accélération
multibande tant et aussi longtemps que le facteur d’accélération reste modéré, c’est-à-dire
environ un facteur 3 pour nos expériences. Nous avons aussi analysé deux jeux de données
in vivo acquis dans deux centres différents, incluant quatre répétitions d’un même sujet
publiquement disponible en ligne. Les résultats ont démontré que la méthode proposée
est stable sur ces quatre jeux de données et permet d’identifier la distribution du signal
théorique, tout en évitant les voxels contaminés par des artéfacts. Les résultats du second
jeu de données in vivo indiquèrent aussi que la distribution du signal calculée était similaire
à celle dictée par la théorie selon l’algorithme de reconstruction utilisé lors de l’acquisition.

Finalement, le Chapitre 6 présenta un nouvel algorithme pour harmoniser les données
d’IRM de diffusion acquises sur différents scanners. En utilisant un algorithme d’apprentis-
sage de dictionnaire, nous avons montré comment des caractéristiques peuvent être automa-
tiquement extraites des données acquises sur un scanner cible. Ces dernières sont ensuite
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utilisées pour reconstruire les données d’un scanner source différent, tout en éliminant la
variabilité attribuée aux deux scanners et en préservant la variabilité anatomique. Les expé-
riences sur un jeu de données publiquement disponible montrèrent comment l’algorithme
réduit la variabilité sur certaines métriques couramment utilisées en IRM de diffusion et
peut même être utilisé si la résolution spatiale ne concorde pas entre les scanners grâce
à un sous-échantillonnage spatial du dictionnaire. Pour vérifier si la variabilité retranchée
n’était pas due à de véritables différences anatomiques, nous avons aussi généré une version
altérée des données en les contaminant artificiellement avec de l’œdème libre. Les résultats
supportèrent l’hypothèse de la variabilité comme étant issue des scanners, puisque cette der-
nière décrut tout en préservant la taille d’effet lorsque les données altérées furent comparées
avec leur version originale à l’aide d’un test t de Student pour échantillons appariés sur les
quatre métriques de diffusion étudiées. La taille d’effet était, en moyenne, comprise dans le
même intervalle de confiance à 95% que les données non altérées, confirmant ainsi que le
procédé d’harmonisation n’a pas enlevé de variabilité due à l’anatomie lorsque l’on compare
les données harmonisées avec les données originales.
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