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Introduction
One way to circumvent the typically low signal-to-noise ratio (SNR) in diffusion-weighted (DW) MRI datasets is to use denoising algorithms (e.g., [1,2,3]). While the
advantage of this strategy is that it does neither increase the acquisition time nor requires a specific acquisition setup, it intrinsically relies on accurate estimation of
noise properties i.e. type of noise distribution and its variance [4]. Algorithms which assume fewer hypotheses are thus likely to still be applicable in situations where
clinical datasets are astray from the theoretical assumed noise distributions. To circumvent the need of reliably estimating such noise parameters, we extend the Non
Local Spatial and Angular Matching (NLSAM) denoising approach [1] with a fast and efficient path algorithm strategy that does not explicitly rely on noise properties.

Methods
Theory: We  adapted  the  available  implementation  of  [1]  to  use  a  penalized  l1-norm
reconstruction (see  Eq. 1) instead of a constrained  l1-norm reconstruction (see  Eq.  2). This
allows for using path algorithms [5,6], which compute multiple values for the regularization
factor, yielding different signal reconstructions with their associated linear models. However,
by removing the  explicit  dependence of  the  regularization parameter  on the  noise level,  a
model selection strategy is now needed. To tackle this challenge, an unbiased estimation of the
degrees of freedom for  l1-regularized models has been developed [7], making it possible to
rely on well known methods such as the Aikake information criterion (AIC) or the Bayesian
information criterion (BIC) for optimal model selection.  

Simulated DW data: We used the publicly available synthetic data from the ISMRM 2015
tractography challenge [8], which is a full brain dataset consisting of 32 DW images with b =
1000 s/mm2 and one b = 0 s/mm2 at a spatial resolution of 2 × 2 × 2 mm3. Starting from the
ground  truth  data,  we  added  Rician  distributed  noise  at  various  SNR,  where

 with mean (b0) the mean intensity of the b = 0 s/mm2  image and  the
Gaussian noise variance.

In vivo DW data: We used the publicly available in vivo dataset of [2], which contains 40 DW
images with b = 1000 s/mm2 and one b = 0 s/mm2 image at a spatial resolution of 1.2 × 1.2 ×
1.2 mm3.

Analyses: To  evaluate  the  performance  of  the  proposed  path  denoising  method,  we
qualitatively show the denoising result on the in vivo dataset and quantitatively evaluated
both  methods  on  the  synthetic  dataset  with  the  structural  similarity  index  (SSIM)  and
normalized  root  mean  square  error  (NRMSE)  computed  on  a  slice  of  interest.  We  first
corrected the Rician noise bias with the algorithm of [9] and processed the synthetic dataset
with the default parameters of NLSAM (block size of 3x3x3 and 5 angular neighbors) and our
modified NLSAM path version. We used the  BIC as a selection criterion since  it  favors
sparser models than the AIC, which is an underlying hypothesis of l1-norm optimization.

Results
Figure 1 shows A) the noiseless data, B) the noisy input data C) the denoised results for our
NLSAM path version and D) the original NLSAM denoising. Figure 2 shows the results of
each algorithm and residuals on the in vivo dataset. Figure 3 shows the SSIM and NRMSE
for the synthetic data at various SNRs. In all studied cases, denoising improves the results
over the original data and our path searching strategy improves upon the original NLSAM
formulation in terms of NRMSE.

Discussion & Conclusion
We have shown how path searching algorithms can be  used for  efficiently  denoising diffusion datasets  without
relying on an explicit estimation of the noise level. This estimation can be problematic to accurately perform in some
scenarios e.g. the acquired data exhibit artifacts or the scanner applied some post-processing filter on the background
image [4]. This approach is also about five times faster than the original constrained NLSAM algorithm with the use
of warm start from previous solutions along the regularization path [6]. Since most denoising algorithms share an
intrinsic dependence on the noise variance, this also means they cannot perform optimally on data where the noise
estimation deviates from their theoretical assumptions. Algorithms which assume fewer hypotheses are thus likely to
still be applicable in situations where clinical datasets are astray from the theoretical assumptions of each algorithm. 
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Figure 1: Denoising results for the synthetic dataset A) ground truth B) noisy 
input data C) nlsam path D) original nlsam E) removed noise from C) and F) 
removed noise from D). Noise is removed without affecting structure.

Figure 2: Top : Denoising results for the invivo dataset and Bottom : Removed 
noise from each image on B) noisy input data C) nlsam path D) original nlsam.

Figure 3: Structural similarity index (SSIM) and 
normalized root mean squared error (NRMSE) for 
various SNR on the synthetic dataset.


