
 

Introduction: Quantitative scalar measures of diffusion MRI datasets are subject to normal variability across subjects, but potentially abnormal values may yield 

essential information to support analysis of controls and patients cohorts. However, small changes in the measured signal due to differences in scanner hardware or 

reconstruction methods in parallel MRI1,2,3 may translate into small differences in diffusion metrics such as fractional anisotropy (FA) and mean diffusivity (MD)4. In 

the presence of disease, these small variations are entangled in the genuine biological variability between subjects. In this work, we propose a new harmonization 

algorithm based on adaptive dictionary learning to mitigate the unwanted variability caused by different scanner hardware while preserving the natural biological 

variability present in the data5. 

 

Methods: A dictionary is formed from local windows of spatial and angular patches extracted from the diffusion weighted images (DWI), exploiting self-similarity 

of different DWIs at the same spatial location and close on the sphere6,7. All extracted patches are stored as vectors Xn and a subset is randomly chosen to initialize 

the dictionary D. A sparse vector α can now be computed such that D is a good approximation to Xn ≈ Dαn and D can be subsequently updated to better approximate 

those vectors. At the next iteration, a new set of candidate vectors Xn is randomly drawn and D is updated to better approximate this new set of vectors. This iterative 

process can be written as 

 

 
 
with αn the sparse coefficients, D the dictionary where each column is constrained to unit l2-norm to prevent degenerated solutions and λi is an adaptive regularization 

parameter for iteration i which is automatically determined8 for each individual Xn. This is done with 3-fold cross-validation (CV) and minimizing the mean squared 

error or by minimizing the Akaike information criterion (AIC)9. Once the dictionary has been optimized with patches from all scanners, it should only contain features 

that are common to all datasets. Approximation with this optimal dictionary therefore discards scanner specific effects from the data as they are not contained in the 

dictionary itself as detailed in Figure 1. 

 

Datasets: We use the benchmark database from the CDMRI 2017 challenge10, which consists of ten training subjects and four test subjects acquired on three different 

scanners (GE with gradient strength of 40 mT/m, Prisma with 80 mT/m and Connectom with 300 mT/m). The database consists of 3 b = 0 s/mm2 images, 30 DWIs 

acquired at b = 1200 s/mm2 at a resolution of 2.4 mm isotropic and TE / TR = 98 ms / 7200 ms. Note that the GE datasets were acquired with a cardiac gated TR 

instead. Standard preprocessing includes motion correction, EPI distortions corrections, image registration and brain extraction for each subject across scanners10. To 

ensure that the scanner effects are properly removed without affecting genuine biological variability, the test datasets were altered in a small region (3000 voxels) 

with a simulated free water compartment to mimick edema according to 

 

 
 

with Sb altered the new signal in the voxel, Sb the original signal in the voxel at b-value b and S0 the signal in the b = 0 s/mm2 image, f is the fraction of the free water 

compartment11 (drawn randomly for every voxel from a uniform distribution U(0.7, 0.9)) and Dcsf = 3 × 10−3 mm2/s. As these altered datasets are not present in the 

training set, we can quantify if the induced effects are properly reconstructed. This was done by computing the MD, FA and rotationally invariant spherical harmonics 

(RISH) features of order 0 and of order 2 for each dataset as in the original challenge10. The effect size from a paired t-test was also computed to evaluate if the 

harmonization algorithm mistakenly removed genuine biological information. 

 

Results: Figure 2 shows the original harmonized data and its metrics (left) and the altered version of those datasets (right) for one subject. The addition of free water 

changes the metrics, but only slightly affect the DWIs themselves. Figure 3 shows the percentage difference between the non-harmonized and harmonized datasets 

with the AIC and CV based regularization. The CV regularization shows larger difference than the AIC regularization. Figure 4 shows the effect size between the test 

datasets and their altered version. Harmonization reduces the effect size in general when compared to the raw datasets. Figure 5 shows the 95% confidence interval 

between the altered and original datasets for the effect size. As most of the confidence intervals are overlapping, this shows that the harmonization procedure does 

not remove genuine anatomical variability in general. 

 

Discussion and Conclusion: We have shown how a mapping from multiple scanners towards a common space can be constructed automatically through dictionary 

learning using unpaired training datasets to reduce intra and inter scanner differences. This approach has the benefit of removing variability attributable to multiple 

scanners, instead of trying to force a source scanner to mimic variability which is solely attributable to a target scanner. Reconstruction of altered versions of the test 

datasets corrupted by a free water compartment preserved the induced differences, even if such data was not part of the training datasets, while removing variability 

attributable to scanner effects. The presented algorithm could help multicenter studies in pooling their unpaired datasets while removing scanner specific confounds 

before computing dMRI scalar metrics. 
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Figure 1: Schematic representation of the harmonization between scanners with adaptive dictionary learning. Local patches 

are extracted from angular and spatial neighborhood to compute their representation using a source dictionary. The 

harmonized reconstruction is obtained by computing new coefficients with the optimal dictionary learned from all scanners. 

Figure 2: Exemplar slice of subject ’H’ on the GE scanner as original (left half) and altered (right half) 

metrics. Each column shows (from left to right) a b = 0 s/mm2 image, a DWI at b = 1200 s/mm2, the FA, 

ADC, RISH 0 and RISH 2 metrics. The top row shows the raw data, the middle row shows the data 

harmonized using the AIC and the bottom row shows the harmonized data using the CV. The yellow box 

indicates the altered region with added free water 

 

Figure 3: Exemplar slice of subject ’H’ on the GE scanner as original (left 

half) and altered (right half) metrics in the same ordering as Figure 2. The top 

row (resp. the bottom row) shows the relative percentage difference between 

the harmonized data using the AIC (resp. the CV) and the raw data. 

Figure 4: Boxplots of the effect size for each metric with the mean value as the black 

dot. The raw data is shown in red (no harmonization), the data harmonized with the AIC 

in blue and finally the data harmonized with the CV in orange. The top row shows the 

effect size when both datasets are in their original version, the middle row when only 

one of the dataset is altered and the bottom row when both datasets are altered. The top 

and bottom row are only affected by scanner effects. 

Figure 5: Effect size for each metric between the original and altered datasets on the 

same scanner with a 95% confidence interval. The top row shows the effect size between 

the original and altered dataset on the GE scanner, the middle row for the Prisma scanner 

and the bottom row for the Connectom scanner. This effect size is only due to the 

alterations performed in the experiments and is free of any other source of variability, 

such as registration error or scanner effects. 
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