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Introduction 
Intravoxel incoherent motion (IVIM) MRI¹ allows measuring pseudo perfusion as an extension to diffusion weighted 

imaging (DWI) measures such as the apparent diffusion coefficient (ADC). Recent applications in oncology² makes it an 
attractive addition to the traditional ADC measurements which could help capturing potential microstructural alterations in 

disease. However, the use of two compartments model, such as in IVIM, is susceptible to numerical issues³ and are 

traditionally solved using nonlinear least squares method. We investigate the stability and precision of recovered IVIM 
parameters by making use instead of separable nonlinear least squares4,5 and optionally the addition of a constant 

compartment. 

 

Theory 
The IVIM model is characterized by a fast diffusing compartment accounting for perfusion and a slower 

diffusing compartment which represents the traditional definition of diffusivity in tissues. This can be written as 

 
Sb / S0 = f1 exp(-b*D1) + f2 exp(-b*D2) 

 

with Sb the diffusion attenuated signal, S0 the non diffusion weighted signal, b the b-values, f1, f2 are the signal fractions 
balancing each compartment of the model and D1, D2 are the associated diffusivities. While the IVIM model is non linear 

in itself, it contains a linear part in f1, f2 and a non linear part in D1, D2. The IVIM model can be solved using separable 

nonlinear least squares, which enables solving only non linearly for the diffusivities D1, D2 and using linear least squares 
methods for the fractions f1, f2. The key idea lies in replacing the linear parameters by a function of the nonlinear parameters 

only; assuming D1, D2 would be known, the solution to f1, f2 can be expressed as the pseudoinverse of the linear system. 

This expression can be plugged-in implicitly in the original problem4,5, which now only depends on the nonlinear parameters 
D1 and D2. 

 

Data 
To properly capture the IVIM effect, one subject underwent a DWI sequence on a 3T Philips scanner comprised of 7 b0s volumes, 3x 

DWI of [5, 10, 20, 50, 100, 150, 300, 500] s/mm², 6x 750 s/mm², 20x 1000 s/mm², 10x 1400 s/mm² and 30x 2500 s/mm² for a total of 

97 volumes. The acquisition was optimized for angular coverage on all shells. Multiband and SENSE acceleration with a factor of 2 
were both employed with TE/TR = 113 ms / 7.1 s and a voxelsize of 2 mm isotropic. 

 

A synthetic dataset was also generated 500 times using the same diffusion weighting as the invivo scan with parameters f1 = 0.9, f2 = 
0.1, D1 = 0.007 mm²/s and D2 = 0.1 mm²/s. Data was simulated at SNR 10, 20, 30, 40 and 50 by adding Rician noise where SNR = S0 

/ σ with σ the noise standard deviation.  

 

Methods 
We compared the use of a two compartments IVIM model using both nonlinear least squares and separable nonlinear least squares. We 

additionally added a constant compartment with a diffusivity close 0 mm²/s to account for the noise floor and non gaussian diffusion 

present in our datasets2,6. We used constraints on each variable to discourage poor solutions due to the nonconvexity of the model3. All 
fractions fi were constrained to 0 ≤ fi ≤ 1 while the diffusivities were constrained to 1e-5 ≤ D1 ≤ 2e-3, 2.5e-3 ≤ D2 ≤ 1, 0 ≤ D3 ≤ 1e-5. 

We also used starting values of f1 = 0.8, f2 = 0.2, f3 = 0 and D1 = 1e-3, D2 = 5e-2, D3 = 0. Note that f3 and D3 are the constant parts which 

were only used for the three compartments model experiments. The separable least square approach also did not require starting 

estimates of fi, while it can still make use of bounds during optimization. 

 

Discussion & Conclusion 
Figure 1 shows the mean and standard deviation of parameters for the synthetic experiments across the 5 tested SNRs. Using a three 
compartments model to capture the non gaussianity/noise floor effect reduces the variance of the recovered parameters. The use of 

separable least squares also improves estimation of the fractions. Figure 2 shows the signal which is captured by adding a third 

compartment - even though the true underlying model has only two compartments. As expected, the inverse of this captured constant 
signal part follows approximately the SNR level due to the reduced noise floor with increasing SNR. Figure 3 and 4 show results 

on the invivo dataset using two and three compartments. For the two compartments case, both nonlinear and separable least square 

seems to perform equally with the fast diffusion D2 being more homogeneous for the separable least square. In the three compartment 
cases, both method recover plausible diffusivities in the ventricles, unlike the two compartments case. Moreover, the constant 

compartment captures the non gaussianity and noise floor part as expected. Figure 5 shows the signal part represented by this third 

compartment, which is mostly constant across all b-values. 
The separable least squares approach reduces the parameters space to only the nonlinear components by implicitly including the 

linear variables in the optimization procedure.  
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Figure 1 : Mean and standard deviation of 500 trials for a two (resp. three) 

compartments fit using nonlinear least squares (blue, resp. yellow) and the 

proposed separable least squares approach (red, resp. purple). Both method 

generally see an increase in precision and accuracy with higher SNR. The 
fractions (top) gain in precision and accuracy for a three compartment model fit. 

For the diffusivities (bottom), the precision is increased for D1 when using a 

three compartments fit while the accuracy is only increased until SNR 30. The 

proposed fitting method provides the largest precision increase for the fractions. 

Figure 2: Mean and standard deviation of the signal as computed by the 

constant compartment and fraction no. 3 for the synthetic experiments. 

Note how the signal value scales with the SNR in both cases as it captures 
the Rician noise floor part of the signal. The proposed separable least 

squares method also follows linearly the SNR while classical nonlinear 

least squares under represents the noise floor at higher SNR. 

Figure 3  A two compartments model fit with the nonlinear least 

squares method (top row) and the proposed separable least squares 

(bottom row). The fractions for the signal part (left) is similar for both 
cases, but the diffusivities (right) for the IVIM signal are more 

homogeneous for the proposed method. The nonlinear least squares is 

underrepresenting the back of the brain while the frontal part exhibits 
higher diffusivity. 

 

Figure 4: A three compartments model fit with the nonlinear least squares method (top row) and the 

proposed separable least squares (bottom row). The three fractions for the signal part are on the left 
while the diffusivities are shown on the right. As in figure 2, the IVIM signal and combined noise 

floor and kurtosis effect are more homogeneous for the proposed method. Nevertheless, the estimated 

fraction f1 and diffusivity D1, which comprises the major part of the brain, is similar in both cases. 
 

Figure 5: Average signal intensity as captured by compartment f3 and D3 for both 
methods ordered by b-values for a single slice of the invivo dataset. A decrease of 

approximately 0.1% in the value representing the noise floor is observed for both 

case. This is in line with the assumption that this (constant) compartment should 
be stable across b-values as the noise floor affects equally every acquired volume. 

 


