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Introduction 

Diffusion MRI (dMRI) suffers from relatively long scan times and low signal to noise ratio (SNR), which limits the acquired spatial resolution. Many techniques have emerged to increase image 

quality and achieve higher spatial resolutions such as specialized acquisition schemes [1, 2, 3], image processing techniques to increase spatial resolution [4, 5, 6] and denoising techniques to increase 

the SNR [7, 8, 9].While these methods typically aim to either increase the spatial resolution or improve the SNR, it would be beneficial to combine both, enhancing their effectiveness. In this work, 
we propose such a unified framework for denoising and upsampling dMRI data based on a sparse representation of the diffusion signal. 

Theory 

Sparse linear models have been used as a powerful method to represent the MRI signal by only using a few elements. Such a representation has been 
used for structural MRI upsampling [10] or dMRI denoising [8]. The key idea is to decompose locally n dMRI signals Xi as a linear combination of a 

few basis elements [11] through equation 1. By exploiting the redundancy of the signal, a sparse representation Xi=Dαi can be found, with Xi the 

MRI signal in a neighborhood i, D the dictionary, αi the sparse coefficients, a tradeoff parameter between data fitting and sparsity and Xi the 
reconstructed signal. In our unified framework, we propose to extract a lower resolution representation d by averaging the columns of D to form 

smaller patches, thus giving a one-to-one mapping between low and high resolutions patches within a multiscale approach [12]. We then solve 

equation 2 using d with λi=σ²i (m + 3√2), and m the number of elements in a patch. This would give a denoised representation [8] for Xi=dαi, but by 

instead using the direct relationship between d and D, we reconstruct a high resolution, denoised representation 𝑋̂ = 𝐷𝛼𝑖 as shown schematically in 

figure 1. 

 

Methods 

Two datasets of the same subject were obtained on the same 3T Philips scanner; a 1.8 mm dataset with 64 b = 1000 s/mm2 volumes, TR/TE = 18.9 s / 
104 ms and a 1.2 mm dataset with 40 b = 1000 s/mm2 volumes, TR/TE = 11.1 s / 63 ms, both with one b = 0 s/mm2. The 1.2 mm dataset serves as a 

gold standard for spatial resolution attainable with enough signal within a reasonable timeframe on a standard scanner. Using the 1.8 mm dataset, we 

first estimated the variance of the Rician noise with PIESNO [13] and corrected for Rician noise bias [14]. We extracted spatial patches of size (6, 6, 
6) with 5 angular q-space neighbors to construct D using equation 1 and then downsampled it by a factor of 2 in each dimension, thus creating d of 

size (3, 3, 3). The coefficients i were computed with equation 2 and d, thus obtaining an upsampled  𝑋̂ = 𝐷𝛼𝑖 at 0.9 mm. To show the improvements 
of the proposed method, we denoised separately the 1.8 mm and 1.2 mm datasets. The original 1.8 mm and denoised datasets were then upsampled 

by a factor 2 using both linear spline and cubic spline interpolation as described previously [5]. We also computed 
colored fractional anisotropy (FA) maps with a robust tensor estimation [15] as implemented in ExploreDTI [16]. 

 

Results 

Figure 2 compares the raw data on the 1.8 mm dataset and the various upsampling on the original and denoised 

dataset on a coronal slice. The 1.2 mm dataset is also shown with its denoised version for anatomical comparison. 

Figure 3 shows two zoomed regions; the corpus callosum, the cingulum and the corticospinal tract and the pons 
region with the cerebellum. Figure 4 and 5 show the colored FA maps of the previous figures. Interpolation on the 

raw data leads to residual artefacts in the interpolated dataset. Applying denoising separately from interpolation 

introduces line artefacts or blurring, while our proposed combined approach preserves more details, but with the 

tradeoff of some blocking artefacts. Interpolation results are in agreement with the 1.2 mm raw and denoised dataset, 

even though they are produced from a 1.8 mm dataset. 

Discussion and conclusion 

We presented a new framework which combines two usually separate processing steps, namely denoising and 

upsampling, in a single unified framework. The proposed method links a set of lower and higher resolution patches, 

which permits reconstruction of dMRI data at a higher resolution than initially acquired without using specialized 
acquisition schemes. This category of approaches is particularly attractive since they can be applied on any already 

acquired datasets. As noted previously [5], upsampling can reveal finer anatomical details which might help 

tractography, but care should be taken about possible biases or introduced artefacts in computed metrics such as FA. 
Moreover, our proposed method could be combined with acquisition techniques [1, 2, 3] to potentially improve the 

provided anatomical information. 
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Figure 1: Schematic representation of the 

proposed framework. The dictionary D is 
computed with equation 1 and downsampled 

into d, creating an exact mapping between the 

low and high resolution elements. αi is then 
computed with equation 2 and d, which gives 

the final denoised and upsampled reconstruc-

tion using 𝑋̂ = 𝐷𝛼𝑖. 

 

Figure 2: Top row: interpolation only. Middle row: denoising and 
interpolation. Bottom row: proposed method and comparative denoised 1.2 

mm dataset.  Interpolating the noisy data picks up most of the noise, while 

interpolating the denoised data is more blurry than our proposed framework. 

Figure 3: In the pons, interpolation with or without denoising shows more blurring than the 1.2 mm denoised 

acquisition than our proposed method. The contrast between the corpus callosum, the ventricles and the corticospinal 

tract is preserved with our proposed method, but lost with the linear and cubic spline interpolation. 

Figure 5: Interpolation picks up more details than the 1.8 mm dataset as seen by the green part coming out from the 
pons, but at the price of some artefacts for the linear version. Our proposed method shows nice delineation between 

the different structures, similar to the 1.2 mm dataset.  

Figure 4: On the denoised datasets, some line artefacts start to 

appear and are more common in the cubic spline interpolated 

version. In contrast, our proposed method does not seem to 
exhibit such issues and is in agreement with the denoised 1.2 mm 

dataset, notably in the pons region. 
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