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Synopsis

Diffusion MRI suffers from relatively long scan times and low signal to noise ratio (SNR), which limits the
acquired spatial resolution. In this work, we propose a unified framework for denoising and upsampling
diffusion datasets based on a sparse representation of the diffusion signal. Our proposed method shows
less blurring and increased anatomical details in the pons region when compared to denoising and
subsequent spline interpolation. At the junction of the corpus callosum, the corticospinal tract and the
cingulum, finer structures are also preserved as evidenced by a high resolution invivo acquisition.

Introduction

Diffusion MRI (dMRI) suffers from relatively long scan times and low signal to noise ratio (SNR), which
limits the acquired spatial resolution. Many techniques have emerged to increase image quality and
achieve higher spatial resolutions such as specialized acquisition schemes [1, 2, 3], image processing
techniques to increase spatial resolution [4, 5, 6] and denoising techniques to increase the SNR [7, 8, 9].

While these methods typically aim to either increase the spatial resolution orimprove the SNR, it would be
beneficial to combine both, enhancing their effectiveness. In this work, we propose such a unified
framework for denoising and upsampling dMRI data based on a sparse representation of the diffusion
signal.

Theory

Sparse linear models have been used as a powerful method to represent the MRI signal by only using a few
elements. Such a representation has been used for structural MRI upsampling [10] or dMRI denoising [8].
The key idea is to decompose locally » dMRI signals X; as a linear combination of a few basis elements [11]
through equation 1. By exploiting the redundancy of the signal, a sparse representation X =D o, can be
found, with X; the MRI signal in a neighborhood i, D the dictionary, o, the sparse coefficients, 1 a
tradeoff parameter between data fitting and sparsity and X, the reconstructed signal.
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In our unified framework, we propose to extract a lower resolution representation d4 by averaging the
columns of D to form smaller patches, thus giving a one-to-one mapping between low and high

resolutions patches within a multiscale approach [12]. We then solve equation 2 using d4 with
A =02 (m + 3\2), and m the number of elements in a patch. This would give a denoised representation



[8] for X =da,, but by instead using the direct relationship between d and D, we reconstruct a high
resolution, denoised representation X = Da, as shown schematically in figure 1.

Equation 2
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Figure 1: Schematic representation of the proposed framework. The dictionary D is first computed with
equation 1 and downsampled into 4, which creates an exact mapping between the low and high resolution
elements. «; is then computed with equation 2 and d, which gives the final denoised and upsampled

reconstruction using X =D o,.

Methods

Two datasets of the same subject were obtained on the same 3T Philips scanner; a 1.8 mm dataset with 64
b = 1000 s/mm? volumes, TR/TE = 18.9 s / 104 ms and a 1.2 mm dataset with 40 b = 1000 s/mm? volumes,
TR/TE = 11.1 s / 63 ms, both with one b = 0 s/mm? The 1.2 mm dataset serves as a gold standard for spatial
resolution attainable with enough signal within a reasonable timeframe on a standard scanner.

Using the 1.8 mm dataset, we first estimated the variance of the Rician noise with PIESNO [13] and
corrected for Rician noise bias [14]. We extracted spatial patches of size (6, 6, 6) with 5 angular g-space
neighbors to construct D using equation 1 and then downsampled it by a factor of 2 in each dimension,
thus creating d of size (3, 3, 3). The coefficients o, were computed with equation 2 and d, thus obtaining

an upsampled X =D «, at 0.9 mm.

To show the improvements of the proposed method, we denoised separately the 1.8 mm and 1.2 mm
datasets. The original 1.8 mm and denoised datasets were then upsampled by a factor 2 using both linear
spline and cubic spline interpolation as described previously [5]. We also computed colored fractional
anisotropy (FA) maps with a robust tensor estimation [15] as implemented in ExploreDTI [16].



Results

Figure 2 compares the raw data on the 1.8 mm dataset and the various upsampling on the original and
denoised dataset on a coronal slice. The 1.2 mm dataset is also shown with its denoised version for
anatomical comparison. Figure 3 shows two zoomed regions; the corpus callosum, the cingulum and the
corticospinal tract and the pons region with the cerebellum. Figure 4 and 5 show the colored FA maps of
the previous figures. Interpolation on the raw data leads to residual artefacts in the interpolated dataset.
Applying denoising separately from interpolation introduces line artefacts or blurring, while our proposed
combined approach preserves more details, but with the tradeoff of some blocking artefacts. Interpolation
results are in agreement with the 1.2 mm raw and denoised dataset, even though they are produced from
a 1.8 mm dataset.
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Figure 2: From left to right, top to bottom : A) the 1.8 mm input dataset B) linear spline interpolation of
the 1.8 mm dataset C) cubic spline interpolation of the 1.8 mm dataset D) denoised version of the 1.8 mm
dataset E) denoised, then linear spline interpolation F) denoised then cubic spline interpolation G) our
proposed method combining denoising and upsampling H) the 1.2 mm dataset I) the denoised 1.2 mm
dataset. Interpolating the noisy data picks up most of the noise, while interpolating the denoised data is
more blurry than our proposed framework.
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Flgure 3: A zoom of figure 2 showing the pons and the corpus callosum. In the pons, interpolation with or
without denoising shows more blurring than the 1.2 mm denoised acquisition. Our proposed method can
recover information which looks similar to the high resolution denoised acquisition. On the right, the
contrast between the corpus callosum, the ventricles and the corticospinal tract is preserved with our
proposed method, which is lost with the linear and cubic spline interpolation. The 1.2 mm dataset also has
poor SNR in the ventricles, leading to diminished contrast after denoising.

A) 1.8 mm input dataset B) 0.9 mm linear spline interpolation C) 0.9 mm cubic spline interpolation

D) 1.8 mm denoised dataset E) 0.9 mm de_noised + linear spline  F) 0.9 mm denoised + cubic spline

G) Proposed method H) 1.2 mm dataset 1) 1.2 mm denoised dataset

Figure 4: A colored FA map of figure 2. Interpolation shows overall increased details, with the cubic spline
picking up some ringing artefacts. On the denoised datasets, some line artefacts start to appear and are
more common in the cubic spline interpolated version. In contrast, our proposed method does not seem
to exhibit such issues, potentially due to the mapping between low and high resolution patches we employ
which translates to local blocky artefacts instead. Nevertheless, our proposed method reconstruction is in
agreement with the denoised 1.2 mm dataset, notably in the pons region.
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Figure 5: A zoom of figure 4 showing the pons and the corpus callosum on a colored FA map. Spline
interpolation picks up more details than the 1.8 mm dataset as seen by the green part coming out from the
pons, but at the price of some artefacts for the linear version. Our proposed method shows nice
delineation between the different structures, similar to the 1.2 mm denoised dataset. In the corpus
callosum region, our proposed method keeps contrasts between the different bundles, but seem to pick up
some ringing artefact near the ventricles.

Discussion and conclusion

We presented a new framework which combines two usually separate processing steps, namely denoising
and upsampling, in a single unified framework. The proposed method links a set of lower and higher
resolution patches, which permits reconstruction of dMRI data at a higher resolution than initially acquired
without using specialized acquisition schemes.

This category of approaches is particularly attractive since they can be applied on any already acquired
datasets. As noted previously [5], upsampling can reveal finer anatomical details which might help
tractography, but care should be taken about possible biases or introduced artefacts in computed metrics
such as FA. Moreover, our proposed method could be combined with acquisition techniques [1, 2, 3] to
potentially improve the provided anatomical information.
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