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INTRODUCTION: Diffusion Weighted Images (DWIs) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at 
high b-values contains relevant information and is now of great interest for connectomics studies [1]. High noise levels bias the measurements because 
of the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Therefore, high SNR DWIs 
is important in order to draw meaningful conclusions in subsequent data or group analyses [2]. The acquired DWIs differ between themselves, but still 
share the same underlying structure. It is also known that natural images are redundant and can be sparsified [3]. We thus propose to use the 
redundancy of DWIs as a sparse representation to reduce the noise level and achieve a higher SNR using dictionary learning and sparse coding, without 
the need for additional acquisition time. We show quantitative results on the ISBI 2013 HARDI challenge phantom [4]. 
METHOD: Denoising methods are often applied on each DWIs separately [5], without 
taking into account the structure they share. As in [5, 6], we will use the common 
structure amongst DWIs to further improve the denoising. In contrast to [6], our 
method also uses the full information of all DWIs in the same fashion as [7] during the 
first step of the process in addition to the information of angular neighboring DWIs in 
the second step. We improve upon [7] by not enforcing orthogonality in the first step 
and exploiting sparsity of the DWIs in the second step. We first apply [8] to account 
for Rician noise and then perform brain extraction on the DWIs. We next normalize 
each DWIs independently (referred as Xi). The first step is a sparse principal 
component analysis (SPCA) decomposition [9]. This initial denoising is performed 
across all the DWIs at once. We only keep the most meaningful principal components 
(PC) as in [10] and use this first denoised version as the input for the second step. 
This second step consists in doing a local 3D neighborhood denoising based on 
dictionary learning and sparse coding [11, 12]. In this part of the algorithm, we find the 
angular neighbors of each DWIs (excluding B0s). For all Xi, we create a 4D stack 
made of the B0,  Xi  and the p closest angular neighbors to Xi. With this formulation, 
each Xi can be selected as a valid neighbor multiple times, and as such will be 
denoised multiple times (referred as j times). This results in a 4D stack of size (n, n, n, 
P), where n is the size of Xi (in 3D) and P = (2+p). We then extract all 4D patches of 
size (m, m, m, P) from our current stack, which contains spatial information as well as 
angular neighboring information. Each 4D patches is then stored as a column vector. 
We constrain each column to have a unit L2 norm as required by Equation1 [12]. The 
goal is to find a dictionary D in which Xi will be well represented by its coefficients α.  
This minimization aims to find a sparse representation of each neighborhood, while 
discarding noise. Learning D from the noisy patches also ensures the reconstruction 
will be tailored to the neighborhood currently being denoised [11]. The second step is 
repeated for each Xi. The final denoised volume is made by computing the mean of 
those j representations of Xi, i.e. Xi denoised = mean(Xij). We finally apply the inverse 
transformation of [8].  
DATASET: We used for our synthetic experiments the ISBI 2013 HARDI  
testing dataset of SNR10, corrupted with rician noise [4]. The phantom is made of 
64 b=3000 s/mm2 images with a constant b=0 image. 
RESULTS: Figure 1 shows constant solid angle (CSA) q-ball ODFs of order 4 [13] 
reconstructed from the ISBI phantom [4] overlaid onto the colored fractional 
anisotropy (CFA). We denoised the SNR10 data with AONLM [5], LPCA [7] and 
our method. We used AONLM as a comparison since it was the denoising 
algorithm used in the winning method [14]. For our method, we used a 3D block 
size of (3, 3, 3) and 2 angular neighbors with λ=0.01. All other methods were ran 
with their default parameters. Our method reconstructs ODFs that are closer to the 
ground truth than the AONLM denoising, Table 1 shows two perceptual similarity 
metrics, the mean PSNR in dB and mean SSIM computed on the 4D volume. We 
also report three diffusion metrics : the root mean squared fractional anisotropy 
(RMSE FA), root mean squared general fractional anisotropy (RMSE GFA) and the mean angular error (mean AE) with the noiseless data for the SNR10, 
SNR30, AONLM denoising [5], LPCA denoising [7] (not shown on Figure 1) and our method. In most cases, we achieve a higher similarity than the other 
methods, even higher than the SNR30 dataset. 
DISCUSSION: The benefits of denoising the data prior to the reconstruction are shown on Figure 1 and Table 1. Our method reconstructs sharper, more 
uniform ODFs than the SNR10 data provides without denoising. The produced ODF and the underlying CFA map are also closer to the ground truth with 
our method than AONLM and are better than the non-denoised SNR10 data. Using post-processing methods does not add to the clinical acquisition 
burden, while reaching a higher SNR. Having cleaner data also means that reconstruction algorithms will estimate less biased diffusion parameters. This 
in turn leads to more accurate and robust data analyses. We believe that denoising the data should be a pre-processing step part of every pipeline, just 
like motion and eddy current corrections that are commonly applied to correct for artifacts.   
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 SNR10 SNR30 AONLM LPCA Proposed 
PSNR 19.597 29.320 23.869 28.370 30.708 
SSIM 0.876 0.987 0.950 0.982 0.990 

RMSE FA 0.179 0.040 0.132 0.128 0.132 
RMSE GFA 0.152 0.047 0.105 0.103 0.108 
Mean AE 14.047 13.578 13.111 12.905 11.587 

Figure 1 : ISBI Challenge CSA-ODFs reconstructed from the
ISBI HARDI 2013 dataset, overlaid on the CFA map. Top left is
the ground truth, top right the SNR10 data, bottom left our
method and bottom right the AONLM method. The ODFs in our
method more closely resemble the ground truth while having a
more accurate CFA map, as confirmed by results in Table 1. 

Table 1 : Reconstruction metrics for the tested methods. Our 
method performs best for the perceptual similarity (PSNR in dB 
and SSIM) metrics and the mean angular error. A clear gain is 
achieved from the noisy input SNR10 data and our method even 
achieves better reconstruction than the non-denoised SNR30 data 
in most cases. The best result in each category is shown in bold. 


