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1 Introduction

The following is a description of the algorithm used to gen-
erate submissions to the Sparse Reconstruction Challenge for
Diffusion MRI (SPARC dMRI) of the MICCAI 2014 Work-
shop on Computational Diffusion MRI. A total of three sub-
missions were generated for the challenge #1 using the three-
shells datasets with 20, 30, and 60 gradients per shells (b-
values of 1000, 2000, and 3000 s/mm2). We pre-processed
the data using a 3D Non-Local Means denoising [1] on each
DWIs separately.

2 Method description

We used the 3D-SHORE Cartesian basis [2] with a Tikhonov
regularization on the Laplacian to fit the dMRI signal. We
solve the optimisation problem minx
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where E is the normalized diffusion signal, Φ is the system
matrix of size (number of q-points)×(number of basis ele-
ments) (eq. 23 in [2]), c is the coefficient vector and R is the
regularization matrix. We recast this optimization problem
as a Quadratic Program and constrained the reconstructed
signal at q = 0 to be 1. We note that the present technique
makes no attempt to promote sparsity on the coefficient vec-
tor.

For all datasets, we used λ = 0.005 and a maximal ra-
dial order (Nmax) of 8 for the 30 and 60 gradients per shell
datasets and 6 for the 20 gradients per shell dataset in the
construction of Φ.

From the fitted coefficients c, we analytically com-
pute the sth order “radial moment” of the propagator∫∞
0
P (ru)r2+s dr (eq. 33 in [2]). For example, Tuch’s dif-

fusion ODF (dODF) corresponds to s = −2 and the classical
dODF to s = 0. The ODFs are computed on a sphere of
5780 points with s = 2, promoting sharp angular profiles.
The maxima extraction is performed discretely on min-max
normalized ODFs and points with a relative amplitude ≥ 0.5
that are maximal inside a 25◦ neighbourhood are considered
as true maxima.

The signal estimation is obtained by Eest = Φ · c where Φ
is a new system matrix computed from the desired q-points
coordinates.

Figure 1: ODFs estimated from the 3-shells with 60 gradients
directions per shell dataset.

References

[1] Maxime Descoteaux, Nicolas Wiest-Daesslé, Sylvain
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