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Synopsis
We present a comparison of five different methods that estimate mappings between scanners for diffusion MRI data harmonisation. The
methods are evaluated on a dedicated dataset of the same subjects acquired on three distinct scanners with ‘standard’ and ‘state-of-the-art’
protocols, with the latter having higher spatial and angular resolution. Our results show that cross-vendor harmonisation and spatial/angular
resolution enhancement of single-shell diffusion data sets can be performed reliably, although some challenges remain. The dataset is available
upon request and can serve as a useful testbed for future method development in cross-site/cross-hardware and cross-vendor diffusion MRI
harmonisation.

Introduction
MRI data harmonisation is the process of finding a mapping between data sets acquired with different scanners/protocols and making them as
comparable as possible. Harmonisation has become a pressing need in the current era of “big data” and multi-center studies, as it can enable the
combination of data sets from different MRI scanners . This could dramatically increase the statistical power and sensitivity of clinical studies, with
obvious benefits in clinical trials and multi-center research, and enable the transfer of rich information content from state-of-the-art acquisitions to lower
quality data , e.g. to enhance resolution.

This work reports a comparison of five different algorithms for diffusion MRI (dMRI) data harmonisation. The algorithms were trained and evaluated on a
data set of 14 subjects scanned on three scanners from different vendors and with varying hardware specifications. This study presents details of the
dataset which can be used for benchmarking new harmonisation algorithms, and shows the promises and shortcomings of today’s data harmonisation
techniques.

Methods
Data: 14 healthy volunteers were scanned on a 3T GE Excite-HDx, 3T Siemens Prisma, and 3T Siemens Connectom scanner. dMRI images were acquired
with a ‘standard’ protocol on all three scanners, and a ‘state-of-the-art’ protocol on the latter two (Fig.1a). For the state-of-the-art protocol, we exploited
multiband-acquisition and stronger gradients to shorten TE and improve the spatial- and angular resolution per unit time. Additional b=0s/mm  images
were acquired with TE and/or TR matching between protocols (Fig.1b), as well as structural MPRAGEs for each scanner. The data is available for
researchers upon request.

Tasks: This work focuses on the harmonisation of the lowest b-value shell. The b=0 and 1200s/mm  data from 10 randomly selected subjects were used
as training data (all scanners/protocols). The data sets from remaining 4 subjects were used for testing, two tasks were evaluated: 1) scanner-to-scanner
harmonisation, predicting the Prisma and Connectom standard data from the GE data; and 2) spatial- and angular resolution enhancement, predicting the
Prisma and Connectom state-of-the-art data from the GE data.

Preprocessing: All data were corrected for motion and eddy current-distortions using EDDY , the Prisma and Connectom data were corrected for
susceptibility distortions using TOPUP , and the Connectom data corrected for geometric distortions due to gradient nonlinearities . The Prisma and
Connectom data were registered to a common space per subject (Prisma standard) using FLIRT , and the GE data using Elastix nonlinear registration
thereby correcting for susceptibility distortions .

Algorithms: Five different harmonisation approaches were tested (Fig.2a), which learnt mappings between spherical harmonic (SH) coefficients or
rotationally invariant SH (RISH) features .

Evaluation: In the four test data sets, diffusion tensor imaging (DTI) and RISH features (FA, MD and R0, R2 respectively) were computed from the predicted
data for each test subject and algorithm, and evaluated against the ground truth features derived from the acquired data (Fig.2b). The mean-, mean-
normalised-, and mean-squared error were computed globally (in a brain mask excluding cerebellum), regionally (Freesurfer regions ) and locally (3x3x3
voxels neighborhood).

Results
1) Scanner-to-scanner harmonisation: Fig.3 shows the mean-squared error for different Freesurfer regions and different algorithms. Some ROIs have a
consistent higher error (e.g. Cingulum), but no systematic trends in the prefrontal cortex were found, where differences in susceptibility correction
strategies could affect the result.

Distributions of the localised errors were computed across all 4 subjects, Fig.4 shows the median and width (95  percentile) of the a) mean-normalised-
and b) mean-squared error. For each metric at least one algorithm has a mean-normalised error below 5%. Algorithms 3 and 5 consistently show the best
performance.
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2) Spatial- and angular resolution enhancement: Fig.5 shows the median and width of the localised-error distributions. Again both errors vary strongly
across metrics. For each metric at least one algorithm has a mean-normalised error lower than 10%, indicating a lower accuracy for this task. The
Connectom predictions have overall higher accuracy. Algorithms 4 and 5 consistently show the best performance.

Discussion & Conclusion
We present a comparison of dMRI harmonisation methods that estimate mappings between scanners. The methods rely on deep learning and dictionary
learning, are commonly based on SH signal representations, and are capable of harmonising dMRI data to a satisfactory level.

The tested algorithms provide higher accuracy for the scanner-to-scanner harmonisation than for the enhancement task, with the predicted Connectom
data having better scores. Considering potential limitations, the lack of reverse phase-encoding acquisitions for susceptibility distortion correction in the
GE data may have negatively affected co-registration, and thus reduced algorithm-performance in some ROIs. This could be a general issue for
harmonisation of data acquired with different protocols, and is the subject of future work.
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Figures

Fig. 1: description of ‘standard’ and ‘state-of-the-art’ protocols and examples of images from one particular subject.

Fig. 2: a) Overview and specifications of the harmonisation algorithms. B) Evaluation procedure: the error is computed as the difference between the
ground truth and predicted image, and from this the squared- and normalised error are computed.
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Fig. 3: Scanner-to-scanner harmonisation results for the least-performing subject. Mean square error for different features (rows, fractional anisotropy (FA)
and mean diffusivity (MD) derived from DTI, and R0 and R2 are 0th and 2nd order RISH features); for different Freesurfer regions (x-axis), and for the
different algorithms (colours). WM = white matter, GM = gray matter.

Fig. 4: Scanner-to-scanner harmonisation results. Median and width (95th percentile) of the distribution of localised errors for different algorithms. a) mean-
normalised error and b) mean-squared error. Results are shown for DTI features fractional anisotropy (FA) and mean diffusivity (MD), and RISH features R0
and R2.

Fig. 5: Spatial- and angular resolution enhancement results. Median and width (95th percentile) of the distribution of localised errors for different
algorithms. a) mean-normalised error and b) mean-squared error. Results are shown for DTI features fractional anisotropy (FA) and mean diffusivity (MD),
and RISH features R0 and R2.
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