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For the purpose of the ISBI HARDI reconstruction challenge 2013
and for the categories DTI and HARDI acquisitions, we reconstructed
the diffusion datasets using two well established methods: a) Spher-
ical Deconvolution Transform (SDT) [1], [2] and b) Constrained
Spherical Deconvolution (CSD) [3].

The SDT is a sharpening operation which transforms the smooth
diffusion ODF into a sharper fiber ODF. The method is inspired by
CSD [3] with, the main difference that the CSD is applied directly
to the initial signal and the SDT directly to the ODF.

The idea here is that an ODF, for example the analytical Q-ball
ODF ψQBI , can be formed by the convolution between the single
fiber diffusion ODF kernel R and the true fiber ODF ψSDT .

ψQBI(u) =

∫
|w|=1

R(u ·w)ψSDT (w)dw (1)

Therefore, the deconvolution of ψQBI can recover a sharper ψSDT .
We can derive the formula for the ψSDT using symmetrized spherical
harmonics.

ψSDT (u) =

R∑
j=1

2πPlj (0)
cj
fj
Yj(u) (2)

For the derivation and explanation of the formula see [1].
The deconvolution that we used here is a fast converging iterative

process. Usually, taking 5 to 10 iterations for convergence. The main
choice to be considered both for SDT and CSD is the estimation of
the single fiber response function R. We assume that R is derived
from a prolate tensor. The eigenvalues of this tensor are estimated
from the voxels with FA > 0.7. In Tab. 1 we show for the trainings
sets that the estimated eigenvalues can change considerably (values
scaled by 1000).

R estimation DTI HARDI
SNR 10 λ1 = 17.7, λ2 = 4.1 λ1 = 13.6, λ2 = 3.8
SNR 30 λ1 = 18.3, λ2 = 3.7 λ1 = 16.6, λ2 = 3.8

TABLE I

In order to deal with the high levels of noise, the diffusion weighted
(DW) datasets for SNR 10 and 20 were denoised with the adaptive
nonlocal means [4] using a rician noise model. As proposed in [5],
each DW images were processed independently. The DW dataset with
SNR 30 was left intact and no further denoising was performed.

In order to find the best parameters for the methods described
here we created a connectivity matrix after generating deterministic
streamlines from the ODFs of the training set. We finally selected
the parameters which minimized the number of missing and false
bundles in the training set and used those with the test data. In Fig.1
we see results from an ROI from slice Y=22 of the testing dataset
reconstructed with CSD in A and C and with SDT in B and D. The

Fig. 1. ROI [14:24, 22, 23:33] of the denoised test dataset (SNR 10) provided
by the organizers of the HARDI reconstruction challenge 2013. A) CSD DTI,
B) SDT DTI, C) CSD HARDI, D) SDT HARDI.

spherical harmonic order used for the DTI datasests was 6 and for
HARDI 8 both for CSD and SDT. In Fig. 1 we observe that SDT
performed better in the DTI category but CSD performed slightly
better the HARDI category as it managed to resolve more crossing
fibers. For the challenge we submitted all results with ODFs saved
as spherical harmonic coefficients of order 8. The source code for
the methods described in this paper is available at dipy.org.
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