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For the ISBI HARDI reconstruction challenge 2013, we developed
a local estimation method based on Multi-Tensor (MT) fitting with
the Particle Swarm Optimization technique (PSO) [1]. We apply this
reconstruction to the DTI and HARDI data categories.

To fit a MT to the diffusion signal S = {Sk}Mk=0 with gradient
scheme {bk, gk}Mk=0 is to find some parameters so that y = {yk}Mk=0,
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Digk resembles the measured signal S, where

gk is the kth normalized gradient wavevector and bk the correspond-
ing b-value, Di is a rank 2 symmetric tensor with volume fraction
fi and N is the number of compartments in the fit.

To perform the MT fitting, we minimize the fitting error for some
cost function, here the squared error between the measured signal and
the MT approximation, ‖S−y‖22. This minimization is carried on by
the particle swarm optimization. The PSO is a stochastic optimization
algorithm using population interaction to find the minimum of a
function f : Rn → R. It starts by randomly initiating Np particles:
points Ω0

j ∈ Rn, and Np velocities: points v1j ∈ Rn. These points
then evolve into the search space according to Ωt+1
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and vt+1
j = wvtj + φprp(ptj − Ωt

j) + φgrg(gt − Ωt
j), where w,

φp and φg are user tuned parameters, ptj is the jth particle’s best
known position at iteration t, gt is the swarm’s best known position
at iteration t and rp, rg ∼ U [0, 1]. The process is repeated for Ni
iterations or until some convergence criterion is met. The velocity
update formula means that the particles are drawn to the swarm’s
best known position while being deflected by their own best location
and conserving some of their past momentum. Particles near g will
fully explore that area of the space and find the true local minimum
while others will converge there from all over the space, allowing to
potentially find new attractor points or finding a better value near their
own best known location. Finally, the conservation of their previous
velocity and its random weighting with p and g allow for the particles
to escape non-optimal local minima, potentially attracting to them
other particles that are trapped.

For the contest, we compared using the raw DW, the DW denoised
with adaptive nonlocal means [2] using a rician noise model. As
proposed in [3], each DW images were processed independently.

We constrained the MT model to use only prolate tensors and also
tested adding an isotropic compartment and fixing the volume fraction
to be equal between the non-isotropic compartments.

Since the number of compartments is a meta parameter, we chose
as a strategy to overfit at every voxel by always estimating three
fiber compartments and to re-estimate with less compartments certain
voxels based on two criterion. We first enforce that no voxel has peaks
closer to each other than θ◦. This angular based pruning provides a
good cleaning because the peaks tend to converge together when the
voxel has been overmodeled. The only drawback is that we put a
hard lower bound on the method’s angular resolution. Secondly, we
look at the model complexity of neighboring voxels after the angular

Fig. 1. Peaks in the testing dataset (ROI = [14:24, 22, 23:33]). Left is DTI,
right is HARDI, both result on snr = 10 with denoising from [2].

pruning to detect outliers. A voxel that has more compartments than
Ψ% of it’s neighborhood is re-estimated with less compartments.

In order to validate which denoising and MT constraints were
optimal on the training data, we computed tractography for all
the different combinations. Considering that the given ground truth
was a binary connectivity matrices with given ROI, we generated
connectivity matrix from track count and used them to qualitatively
evaluate each method. For a specific threshold, we can binarize our
matrix and obtain a connectivity error, # false connections + #
missing connections. A false connection is two regions considered
connected for that threshold that are not in the ground truth and
a missing connection is two regions not considered connected for
that threshold that are in the ground truth. Looking at that error for
different thresholds gives an overview of the validity of the tractogram
produced from that method. Indeed, a good tractogram should allow
for a large range of threshold value that gives low connectivity error.

For the final result, for both the DTI dataset (32 directions at b
= 1200 s/mm2) and the HARDI dataset (64 directions at b = 3000
s/mm2), we used the denoising from [2] for SNR 10 and 20 and
no denoising for SNR 30. The MT model fitted had three prolate
tensors and one isotropic tensor with fixed equal volume fractions.
The pruning parameters were θ = 30◦, Ψ = 50% for DTI and
θ = 20◦, Ψ = 50% for HARDI. We submitted the resulting peaks
to the contest’s organizers.
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